Aim. To investigate whether methylene blue-mediated photodynamic therapy (MB-PDT) can affect the “fate” of macrophages in vitro or in periodontitis tissues and to explore the potential mechanism. Methods. For in vitro treatments, THP-1 macrophages were divided into three experimental groups: C/control, no treatment; MB, methylene blue treatment; and MB-PDT, MB and laser irradiation treatment. Then, apoptosis and apoptosis-related proteins were detected in each group. For in vivo treatments, periodontitis was ligature-induced in the first molars of the bilateral maxilla in 12 Sprague Dawley (SD) rats. After six weeks, the ligatures were removed and all the induced molars underwent scaling and root planning (SRP). Then, the rats were divided into three groups according to the following treatments: SRP, saline solution; MB, phenothiazinium dye; and MB-PDT, MB and laser irradiation. Apoptotic macrophages, inflammation levels, and alveolar bone resorption in the periodontal tissues of rats were analyzed in each group. Results. In vitro, flow cytometry analysis demonstrated that 10 μM MB and 40 J/cm2 laser irradiation maximized the apoptosis rate (34.74%) in macrophages. Fluorescence probe and Western blot analyses showed that MB-PDT induced macrophage apoptosis via reactive oxygen species (ROS) and the mitochondrial-dependent apoptotic pathway. Conversely, the addition of exogenous antioxidant glutathione (GSH) and the pan-caspase inhibitor Z-VAD-FMK markedly reduced the apoptotic response in macrophages. In vivo, immunohistochemistry, histology, radiographic, and molecular biology experiments revealed fewer infiltrated macrophages, less bone loss, and lower IL-1β and TNF-α levels in the MB-PDT group than in the SRP and MB groups (P<0.05). Immunohistochemistry analysis also detected apoptotic macrophages in the MB-PDT group. Conclusion. MB-PDT could induce macrophage apoptosis in vitro and in rats with periodontitis. This may be another way for MB-PDT to relieve periodontitis in addition to its antimicrobial effect. Meanwhile, MB-PDT induced apoptosis in THP-1 macrophages via the mitochondrial caspase pathway.
High performance hydroxyapatite (HA) ceramics with excellent densification and mechanical properties were successfully fabricated by digital light processing (DLP) three-dimensional (3D) printing technology. It was found that the sintering atmosphere of wet CO2 can dramatically improve the densification process and thus lead to better mechanical properties. HA ceramics with a relative density of 97.12% and a three-point bending strength of 92.4 MPa can be achieved at a sintering temperature of 1300 , which makes a solid foundation for application ℃ in bone engineering. Furthermore, a relatively high compressive strength of 4.09 MPa can be also achieved for a DLP-printed p-cell triply periodic minimum surface (TPMS) structure with a porosity of 74%, which meets the requirement of cancellous bone substitutes. A further cell proliferation test demonstrated that the sintering atmosphere of wet CO2 led to improve cell vitality after 7 days of cell culture Moreover, with the possible benefit from the bio-inspired structure, the 3D-printed TPMS structure significantly improved the cell vitality, which is crucial for early osteogenesis and osteointegration.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.