Explosion experiment was implemented on the small tailings dam model, aims to study the explosion effect of tailings sand under the action of the explosion. Explosion experiment includes three phases; experimental points were set respectively in the starter dam, embankment and deposited beach. In this experiment, blasting vibration velocity and vertical displacement of sand body are measured and collected, so did the tailings sand’s moisture content, cracks’ size, blasting crater, water and sand spurt phenomenon. Experimental results show that the buried conditions and tailings dam’s moisture content have a significant impact on explosion effect. By processing the velocity and displacement data, the attenuation law of blast vibration velocity in the tailings dam is reached, the blasting vibration velocity corresponding to crack damage of sand body is predicted, and the relationship between failure phenomenon of the tailings dam and the displacement produced by explosion is obtained.
CFG (Cement Fly-ash Gravel) pile is consisted with macadam, gravel, sand, fly ash mixed with cement and water. In sand, silt, clay and muddy soil and miscellaneous fill foundation, there have been many applications of CFG technology. The attentions and matters of CFG processing are analyzed in this paper.
In this paper, based on the establishment of the finite element calculating model, the influence of the blasting vibration to tailings dams stability was analyzed in accordance with actual stope blasting vibration monitoring data. The laws of the blasting vibrations impact on tailings dam stability was reached by importing different vibration amplitude of vibration wave intensity. When the blasting vibration acceleration remained under 0.333g and vibration velocity remained under 17.005cm/s, the coefficient of the healthy tailings dam stability against sliding has a increasing trend with the increase of vibration strength. When the vibration acceleration and the vibration velocity reached the maximum value, the coefficient rapidly decline; But the influence of stope blasting vibration on the stability of the risky tailings dams is more significant. The coefficient of stability against sliding had a straight-line decrease to the risky tailings dams. In Engineering, more than 4 times margin is considered to find the control vibration velocity. The value is 4.25 cm/s. An analysis shows that the effect of blasting vibration on healthy tailings dam stability has two sides. When the blasting vibration intensity remains within control vibration velocity, it can be beneficial to the stability of tailings dam. Otherwise it will be harmful.
In this paper, the index curve model and hyperbolic model are analyzed. And the settlement value of a real project is forecasted based on these models. The research show that the index curve prediction results relatively conservative. And the cross section of subsidence prediction shows that there is a large difference between these two kinds of model. But the stability of predicting is nearly the same.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.