Voice activity detection (VAD) is a vital process in voice communication systems to avoid unnecessary coding and transmission of noise. Most of the existing VAD algorithms continue to suffer high false alarm rates and low sensitivity when the signal-to-noise ratio (SNR) is low, at 0 dB and below. Others are developed to operate in offline mode or are impractical for implementation in actual devices due to high computational complexity. This paper proposes the upper envelope weighted entropy (UEWE) measure as a means to enable high separation of speech and non-speech segments in voice communication. The asymmetric nonlinear filter (ANF) is employed in UEWE to extract the adaptive weight factor that is subsequently used to compensate the noise effect. In addition, this paper also introduces a dual-rate adaptive nonlinear filter (DANF) with high adaptivity to rapid time-varying noise for computation of the decision threshold. Performance comparison with standard and recent VADs shows that the proposed algorithm is superior especially in real-time practical applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.