Inverse synthetic aperture radar (ISAR) images can be obtained using digital video broadcasting-terrestrial (DVB-T)-based passive radars. However, television broadcast-transmitted signals offer poor range resolution for imaging purposes, because they have a narrower bandwidth with respect to those transmitted by a dedicated ISAR system. To reach finer range resolutions, signals composed of multiple DVB-T channels are required. Problems arise, however, because DVB-T channels are typically widely separated in the frequency domain. The gaps between channels produce high grating Manuscript lobes in the image domain when Fourier-based algorithms are used to form the ISAR image. In this paper, compressive sensing theory is investigated to address this problem because of its ability to reconstruct sparse signals by using incomplete measures. By solving an optimization problem under the constraint of signal sparsity, passive ISAR images can be obtained with strongly reduced grating lobes. Both simulation and experimental results are shown to demonstrate the validity of the proposed approach.
Microbial contamination has been a pervasive issue during the rice storage and triggers extensive researches. The metabolism of microorganisms was proved as an indicator to mirror the degree of microbial contamination. It is necessary to develop a scientific method to analyze the metabolism of rice microbial communities, thereby monitoring the microbial contamination. In this study, the metabolism of rice microbial communities in different storing-year were investigated by BIOLOG ECO microplates. The three rice samples were respectively stored for 1–3 years. The related indicators of BIOLOG ECO microplates were determined, including average well-color development (AWCD) of carbon sources and three metabolic functional diversity indices. The results showed that there were significant differences in the AWCD of all carbon sources among the three rice microbial communities (p < 0.05), and the functional diversity indices except Simpson index showed significant differences (p < 0.05). Additionally, the three rice microbial communities differed significantly in the metabolic utilization of carboxylic acids and miscellaneous (p < 0.05), and there were, however, no significant differences in the other four types of carbon sources. Furthermore, principal component analysis revealed that the microbial communities of stored rice had obviously different metabolic functions in different storage period. Therefore, the study indicated that the BIOLOG ECO microplate was applicable to evaluate the metabolic functions of rice microbial communities, and carboxylic acids and miscellaneous were two crucial parameters of carbon sources to identify the metabolic differences of microbial communities, a case in which it reflected the conditions of rice microbial contamination.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.