It is known that adaptive Fourier decomposition (AFD) offers efficient rational approximations to functions in the classical Hardy H 2 spaces with significant applications. This study aims at rational approximation in Bergman, and more widely, in weighted Bergman spaces, the functions of which have more singularity than those in the Hardy spaces. Due to lack of an effective inner function theory, direct adaptation of the Hardy-space AFD is not performable. We, however, show that a pre-orthogonal method, being equivalent to AFD in the classical cases, is available for all weighted Bergman spaces. The theory in the Bergman spaces has equal force as AFD in the Hardy spaces. The methodology of approximation is via constructing the rational orthogonal systems of the Bergman type spaces, called Bergman space rational orthogonal (BRO) system, that have the same role as the Takennaka-Malmquist (TM) system in the Hardy spaces. Subsequently, we prove a certain type direct sum decomposition of the Bergman spaces that reveals the orthogonal complement relation between the span of the BRO system and the zero-based invariant spaces. We provide a sequence of examples with different and explicit singularities at the boundary along with a study on the inclusion relations of the weighted Bergman spaces. We finally present illustrative examples for effectiveness of the approximation.
An implicit second-order finite difference scheme, which is unconditionally stable, is employed to discretize fractional advection-diffusion equations with constant coefficients. The resulting systems are full, unsymmetric, and possess Toeplitz structure. Circulant and skew-circulant splitting iteration is employed for solving the Toeplitz system. The method is proved to be convergent unconditionally to the solution of the linear system. Numerical examples show that the convergence rate of the method is fast.
In this paper, we present algorithms of preorthogonal adaptive Fourier decomposition (POAFD) in weighted Bergman spaces. POAFD, as has been studied, gives rise to sparse approximations as linear combinations of the corresponding reproducing kernels. It is found that POAFD is unavailable in some weighted Hardy spaces that do not enjoy the boundary vanishing condition; as a result, the maximal selections of the parameters are not guaranteed. We overcome this difficulty with two strategies. One is to utilize the shift operator while the other is to perform weak POAFD. In the cases when the reproducing kernels are rational functions, POAFD provides rational approximations. This approximation method may be used to 1D signal processing. It is, in particular, effective to some Hardy Hp space functions for p not being equal to 2. Weighted Bergman spaces approximation may be used in system identification of discrete time‐varying systems. The promising effectiveness of the POAFD method in weighted Bergman spaces is confirmed by a set of experiments. A sequence of functions as models of the weighted Hardy spaces, being a wider class than the weighted Bergman spaces, are given, of which some are used to illustrate the algorithm and to evaluate its effectiveness over other Fourier type methods.
The Dirac-[Formula: see text] distribution may be realized through sequences of convolutions, the latter being also regarded as approximation to the identity. This paper proposes the real form of pre-orthogonal adaptive Fourier decomposition (POAFD) method to realize fast approximation to the identity. It belongs to sparse representation of signals having potential applications in signal and image analysis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.