The present study was conducted to explore the mechanisms leading to differences among fishes in the ability to biosynthesize long-chain polyunsaturated fatty acids (LC-PUFAs). Replacement of fish oil with vegetable oil caused varied degrees of increase in 18-carbon fatty acid content and decrease in n-3 LC-PUFA content in the muscle and liver of rainbow trout (Oncorhynchus mykiss), Japanese seabass (Lateolabrax japonicus) and large yellow croaker (Larimichthys crocea), suggesting that these fishes have differing abilities to biosynthesize LC-PUFAs. Fish oil replacement also led to significantly up-regulated expression of FADS2 and SREBP-1 but different responses of the two PPAR-α homologues in the livers of these three fishes. An in vitro experiment indicated that the basic transcription activity of the FADS2 promoter was significantly higher in rainbow trout than in Japanese seabass or large yellow croaker, which was consistent with their LC-PUFA biosynthetic abilities. In addition, SREBP-1 and PPAR-α up-regulated FADS2 promoter activity. These regulatory effects varied considerably between SREBP-1 and PPAR-α, as well as among the three fishes. Taken together, the differences in regulatory activities of the two transcription factors targeting FADS2 may be responsible for the different LC-PUFA biosynthetic abilities in these three fishes that have adapted to different ambient salinity.
Arbuscular mycorrhizal (AM) fungi establish symbiosis and improve the lead (Pb) tolerance of host plants. The AM plants accumulate more Pb in roots than their non-mycorrhizal counterparts. However, the direct and long-term impact of AM fungi on plant Pb uptake has been rarely reported. In this study, AM fungus (Rhizophagus irregularis) colonized and non-colonized roots of Medicago truncatula were separated by a split-root system, and their differences in responding to Pb application were compared. The shoot biomass accumulation and transpiration were increased after R. irregularis inoculation, whereas the biomass of both colonized and non-colonized roots was decreased. Lead application in the non-colonized root compartment increased the R. irregularis colonization rate and up-regulated the relative expressions of MtPT4 and MtBCP1 in the colonized root compartments. Rhizophagus irregularis inoculation increased Pb uptake in both colonized and non-colonized roots, and R. irregularis transferred Pb to the colonized root segment. The Pb transferred through the colonized root segment had low mobility and might be sequestrated and compartmented in the root by R. irregularis. The Pb uptake of roots might follow water flow, which is facilitated by MtPIP2. The quantification of Pb transfer via the mycorrhizal pathway and the involvement of MtPIP2 deserve further study.
Potassium plays important roles in most plant physiological processes. Arbuscular mycorrhizal (AM) fungi promote plant water and mineral nutrient acquisition to promote plant growth. However, few studies have focused on the effect of AM colonization on potassium uptake by the host plant. In this study, the effects of an AM fungus (Rhizophagus irregularis) and potassium concentration (0, 3, or 10 mM K+) on Lycium barbarum were evaluated. A split-root test with L. barbarum seedlings was conducted, and the potassium uptake capacity of LbKAT3 was verified in yeast. A tobacco line overexpressing LbKAT3 was generated and mycorrhizal functions under two potassium concentrations (0.2 and 2 mM K+) were studied. Inoculation of R. irregularis and application of potassium increased the dry weight, and potassium and phosphorus contents of L. barbarum, and increased the colonization rate and arbuscule abundance of R. irregularis. In addition, the expression of LbKAT3 and AQP genes in L. barbarum was upregulated. Inoculation of R. irregularis induced LbPT4, Rir-AQP1, and Rir-AQP2 expression, and application of potassium upregulated the expression of these genes. Inoculation with the AM fungus locally regulated the expression of LbKAT3. Inoculation of R. irregularis improved the growth, and potassium and phosphorus contents, and induced NtPT4, Rir-AQP1, and Rir-AQP2 expression in tobacco overexpressing LbKAT3 under both potassium concentrations. Overexpression of LbKAT3 in tobacco improved the growth, potassium accumulation, and AM colonization, and upregulated the expression of NtPT4 and Rir-AQP1 in mycorrhizal tobacco. The results suggest that LbKAT3 may assist in mycorrhizal potassium uptake, and overexpression of LbKAT3 may promote potassium, phosphorus, and water transport from the AM fungus to tobacco.
This study was conducted to compare lipid deposition pattern of three fish species among fish size, Large yellow croaker (Larmichthys crocea), Japanese seabass (Lateolabrax japonicus) and Turbot (Scophthalmus maximus L.), Using magnetic resonance imaging technology for adult fish, results showed that lipid of large yellow croaker mainly deposits in abdominal cavity wall, while for Japanese seabass mainly deposit in visceral adipose tissue and for turbot lipid mainly distribute subcutaneous tissue.Three sizes for each species were selected: S1 (small size), S2 (intermediate size)and S3 (big size), to examine chemical analysis. Results of chemical analysis indicated that whole body lipid content of large yellow croaker significantly increased with the increase in body weight, but Japanese seabass and turbot significantly decreased (p < .05). Lipid content of muscle and intestinal tract in large yellow croaker significantly increased with the increase in body weight (p < .05), but lipid content of adipose tissue, kidney, heart and skin in S2 group were higher than S1 and S3 groups (p < .05). Lipid content of liver, eye, kidney and brain in Japanese seabass significantly increased with the increase in body weight (p < .05), but lipid content of stomach and heart showed an opposite trend. Lipid content of liver, adipose tissue, skin and eye in turbot significantly decreased (p < .05), but lipid content of brain significantly increased with the increase in body weight (p < .05). The results indicated that lipid content of different tissues in fish presented different trends, which was species-dependent. K E Y W O R D SJapanese seabass, large yellow croaker, lipid deposition pattern, turbot wileyonlinelibrary.com/journal/are
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.