Scanning electron microscopy has been developed for topographic analysis at the nanometer scale. Herein, we present a silicon p-n diode with multi-annular configuration to detect backscattering electrons (BSE) in a homemade desktop scanning electron microscope (SEM). The multi-annular configuration enables the enhancement of the topography contrast of 82.11 nA/μm as compared with the commercial multi-fan-shaped BSE detector of 40.08 nA/μm. Additionally, we integrated it with lateral p-n junction processing and aluminum grid structure to increase the sensitivity and efficiency of the multi-annular BSE detector that gives higher sensitivity of atomic number contrast and better surface topography contrast of BSE images for low-energy detection. The responsivity data also shows that MA-AL and MA p-n detectors have higher gain value than the MA detector does. The standard deviation of measurements is no higher than 1%. These results verify that MA p-n and MA-AL detectors are stable and can function well in SEM for low-energy applications. It is demonstrated that the multi-annular (MA) detectors are well suited for imaging in SEM systems.
A novel silicon strip detector has been developed that has the necessary properties to provide two-dimensional position sensitivity with a moderate number of readouts and single-sided detector fabrication process. The concept is based on segmented pixel electrodes arranged in a projective X-Y readouts, it combines the 2-D position resolution of pixel electrode geometry with the simplicity of the projective readout of a double-sided strip detector. And also with proper segmentation of strip electrodes, the multi-hits induced ghost image problem can be resolved.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.