The effects of dietary condition and blood glucose level on the kinetics and uptake of 18F-FDG in mice were systematically investigated using intraperitoneal and tail-vein injection. Methods Dynamic PET was performed for 60 min on 23 isoflurane-anesthetized male C57BL/6 mice after intravenous (n = 11) or intraperitoneal (n = 12) injection of 18F-FDG. Five and 6 mice in the intravenous and intraperitoneal groups, respectively, were kept fasting overnight (18 ± 2 h), and the others were fed ad libitum. Serial blood samples were collected from the femoral artery to measure 18F-FDG and glucose concentrations. Image data were reconstructed using filtered backprojection with CT-based attenuation correction. The standardized uptake value (SUV) was estimated from the 45- to 60-min image. The metabolic rate of glucose (MRGlu) and 18F-FDG uptake constant (Ki) were derived by Patlak graphical analysis. Results In the brain, SUV and Ki were significantly higher in fasting mice with intraperitoneal injection, but MRGlu did not differ significantly under different dietary states and administration routes. Cerebral Ki was inversely related to elevated blood glucose levels, irrespective of administration route or dietary state. In myocardium, SUV, Ki, and MRGlu were significantly lower in fasting than in nonfasting mice for both routes of injection. Myocardial SUV and Ki were strongly dependent on the dietary state, and Ki did not correlate with the blood glucose level. Similar results were obtained for skeletal muscle, although the differences were not as pronounced. Conclusions Intraperitoneal injection is a valid alternative route, providing pharmacokinetic data equivalent to data from tail-vein injection for small-animal 18F-FDG PET. Cerebral Ki varies inversely with blood glucose level, but the measured cerebral MRGlu does not correlate with blood glucose level or dietary condition. Conversely, the Ki values of the myocardium and skeletal muscle are strongly dependent on dietary condition but not on blood glucose level. In tissue in which 18F-FDG uptake declines with increasing blood glucose, correction for blood glucose level will make SUV a more robust outcome measure of MRGlu.
In view of the recent findings of stimulatory effects of GHRH analogs, JI-34, JI-36 and JI-38, on cardiomyocytes, pancreatic islets and wound healing, three series of new analogs of GHRH(1–29) have been synthesized and evaluated biologically in an endeavor to produce more potent compounds. “Agmatine analogs”, MR-356 (N-Me-Tyr1-JI-38), MR-361(N-Me-Tyr1, D-Ala2-JI-38) and MR-367(N-Me-Tyr1, D-Ala2, Asn8-JI-38), in which Dat in JI-38 is replaced by N-Me-Tyr1, showed improved relative potencies on GH release upon subcutaneous administration in vivo and binding in vitro. Modification with N-Me-Tyr1 and Arg29-NHCH3 as in MR-403 (N-Me-Tyr1, D-Ala2, Arg29 -NHCH3 -JI-38), MR-406 (N-Me-Tyr1, Arg29 -NHCH3 -JI-38) and MR-409 (N-Me-Tyr1, D-Ala2, Asn8, Arg29-NHCH3 -JI-38), and MR-410 (N-Me-Tyr1, D-Ala2, Thr8, Arg29-NHCH3 -JI-38) resulted in dramatically increased endocrine activities. These appear to be the most potent GHRH agonistic analogs so far developed. Analogs with Apa30-NH2 such as MR-326 (N-Me-Tyr1, D-Ala2, Arg29, Apa30-NH2 -JI-38), and with Gab30 -NH2, as MR-502 (D-Ala2, 5F-Phe6, Ser28, Arg29, Gab30 -NH2 -JI-38) also exhibited much higher potency than JI-38 upon i.v. administration. The relationship between the GH-releasing potency and the analog structure is discussed. Fourteen GHRH agonists with the highest endocrine potencies were subjected to cardiologic tests. MR-409 and MR-356 exhibited higher potency than JI-38 in activating myocardial repair in rats with induced myocardial infarction. As the previous class of analogs, exemplified by JI-38, had shown promising results in multiple fields including cardiology, diabetes and wound healing, our new, more potent, GHRH agonists should manifest additional efficacy for possible medical applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.