The understanding of methane adsorption is important for many industrial applications, especially for the shale gas production, where it is critical to understand the adsorption/desorption of methane in pores even as small as a few nanometers. Using small-angle neutron scattering (SANS), we have studied the adsorption of deuterated methane (CD4) into one model mesoporous material, SBA-15, with pore diameter approximately 6.8 nm at the temperature range from 20 to 295 K at low pressure (≈100 kPa). A new scattering model is developed to analyze the SANS patterns of gas adsorption in SBA-15. The surface roughness of the SBA-15 matrix is estimated. The gas adsorption behaviors on the surface regions are extracted from the fitting. The rough surface of the pores is found to retain a large amount of CD4 at the temperature above the capillary condensation temperature (T c). At temperatures below T c, the confined liquid and solid methane are estimated to be less dense than the corresponding bulk liquid and solid methane. Detailed theoretical analysis and experimental verification also show that SANS patterns at temperatures higher than T c are much more sensitive to the change of the excess adsorption, εads, rather than the average density of adsorbed layers commonly used in many studies. The model we establish can be used to analyze future SANS/SAXS data for gas confined in similar model porous materials.
Methane adsorption in model mesoporous silica materials with the size range characteristic of shale is studied by small-angle neutron scattering (SANS). Size effect on the temperature-dependent gas adsorption at methane pressure about 100 kPa is investigated by SANS using MCM-41 and SBA-15 as adsorbents. Above the gas-liquid condensation temperature, the thickness of the adsorption layer is found to be roughly constant as a function of the temperature. Moreover, the gas adsorption properties, such as the adsorbed layer thickness and the specific amount of adsorbed gas, have little dependence on the pore size being studied, i.e., pore radius of 16.5 and 34.1 Å, but are mainly affected by the roughness of the pore surfaces. Hence, the surface properties of the pore wall are more dominant than the pore size in determining the methane gas adsorption of pores at the nanometer size range. Not surprisingly, the gas-liquid condensation temperature is observed to be sensitive to pore size and shifts to higher temperature when the pore size is smaller. Below the gas-liquid condensation temperature, even though the majority of gas adsorption experiments/simulations have assumed the density of confined liquid to be the same as the bulk density, the measured methane mass density in our samples is found to be appreciably smaller than the bulk methane density regardless of the pore sizes studied here. The mass density of liquid/solid methane in pores with different sizes shows different temperature dependence below the condensation temperature. With decreasing temperature, the methane density in larger pores (SBA-15) abruptly increases at approximately 65 K and then plateaus. In contrast, the density in smaller pores (MCM-41) monotonically increases with decreasing temperature before reaching a plateau at approximately 30 K.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.