Diabetic nephropathy is derived from long-term effects of high blood glucose on kidney function in type 2 diabetic patients. Several antidiabetic drugs and herbal medications have failed to prevent episodes of DN. Hence, this study aimed to further investigate the renal injury-reducing effect of antidiabetic CmNo1, a novel combination of powders of fruiting bodies and mycelia of Cordyceps militaris. After being administered with streptozotocin-nicotinamide and high-fat-diet, the diabetic nephropathy mouse model displayed elevated blood glucose and renal dysfunction markers including serum creatinine and kidney-to-body weight ratio. These elevated markers were significantly mitigated following 8 weeks CmNo1 treatment. Moreover, the chronic hyperglycemia-induced pathological alteration in renal tissue were also ameliorated. Besides, immunohistochemical study demonstrated a substantial reduction in elevated levels of carboxymethyl lysine, an advanced glycation end product. Elevated collagenous deposition in DN group was also attenuated through CmNo1 administration. Moreover, the enhanced levels of transforming growth factor-β1, a fibrosis-inducing protein in glomerulus were also markedly dampened. Furthermore, auxiliary risk factors in DN like serum triglycerides and cholesterol were found to be increased but were decreased by CmNo1 treatment. Conclusively, the results suggests that CmNo1 exhibit potent and efficacious renoprotective action against hyperglycemia-induced DN.
Diabetes mellitus (DM) is currently ranked among leading causes of death worldwide in which type 2 DM is reaching an epidemic proportion. Hypoglycemic medications for type 2 DM have either proven inadequate or posed adverse effects; therefore, the Chinese herbal products are under investigation as an alternative treatment. In this study, a novel combination of fruiting body and mycelia powder of herbal Cordyceps militaris number 1 (CmNo1) was administered to evaluate their potential hypoglycemic effects in high-fat diet- (HFD-) induced type 2 DM in C57BL/6J mice. Body weight, fasting blood glucose (FBG), oral glucose tolerance test (OGTT), and blood biochemistry indexes were measured. Results indicated that CmNo1 lowered the blood glucose level by increasing insulin sensitivity, while no change in body weight was observed. Increased protein expression of IRS-1, pIRS-1, AKT, pAKT, and GLUT-4 in skeletal muscle and adipose tissue was found indicating restoration of insulin signaling. Additionally, PPAR-γ expression in adipose tissue restored the triglyceride and cholesterol levels. Finally, our results suggest that CmNo1 possesses strong hypoglycemic, anticholesterolemic, and antihypertriglyceridemic actions and is more economical alternate for DM treatment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.