BackgroundThe human insulin-like growth factor 2 mRNA binding proteins 1–3 (IGF2BP1–3, also called IMP1–3) play essential roles in mRNA regulation, including its splicing, translocation, stability, and translation. However, knowledge regarding the involvement of IGF2BPs in tumor immunity and stemness across cancer types is still lacking.MethodsIn this study, we comprehensively analyzed pan-cancer multi-omic data to determine the correlation of IGF2BPs mRNA and protein expression with various cancer parameters such as mutation frequency, prognostic value, the tumor microenvironment (TME), checkpoint blockade, tumor immune infiltration, stemness and drug sensitivity. Validation of the expression of IGF2BPs in cancer samples and glioma cells were performed by quantitative real-time (qRT)-PCR, and immunofluorescence staining. Investigation of the functional role of IGF2BP3 in glioma stem cells(GSCs) were performed by sphere formation, cytotoxicity, transwell, and wound healing assays.ResultsWe found that IGF2BP1 and 3 are either absent or expressed at very low levels in most normal tissues. However, IGF2BP1-3 can be re-expressed in a broad range of cancer types and diverse cancer cell lines, where their expression often correlates with poor prognosis. Immunofluorescence staining and qRT-PCR analyses also showed that the expression of IGF2BP2 and IGF2BP3 were higher in cancer tissues than that in adjacent normal tissues. Moreover, IGF2BPs are associated with TME and stemness in human pan-cancer. Remarkably, IGF2BP3 participated in the maintenance and self-renewal of glioma stem cell (GSCs). Knockdown of IGF2BP3 attenuated GSC and glioma cell proliferation, invasion, and migration.ConclusionsOur systematic pan-cancer study confirmed the identification of IGF2BPs as therapeutic targets and highlighted the need to study their association with stemness, and the TME, which contribute to the cancer drug-discovery research. Especially, preliminary studies demonstrate the IGF2BP3 as a potential negative regulator of glioma tumorigenesis by modulating stemness.
Atrial fibrillation (AF) is a major risk factor for ischemic stroke. We aimed to identify novel potential biomarkers with diagnostic value in patients with atrial fibrillation-related cardioembolic stroke (AF-CE).Publicly available gene expression profiles related to AF, cardioembolic stroke (CE), and large artery atherosclerosis (LAA) were downloaded from the Gene Expression Omnibus (GEO). Differentially expressed genes (DEGs) were identified and then functionally annotated. The support vector machine recursive feature elimination (SVM-RFE) and least absolute shrinkage and selection operator (LASSO) regression analysis were conducted to identify potential diagnostic AF-CE biomarkers. Furthermore, the results were validated by using external data sets, and discriminability was measured by the area under the ROC curve (AUC). In order to verify the predictive results, the blood samples of 13 healthy controls, 20 patients with CE, and 20 patients with LAA stroke were acquired for RT-qPCR, and the correlation between biomarkers and clinical features was further explored. Lastly, a nomogram and the companion website were developed to predict the CE-risk rate. Three feature genes (C1QC, VSIG4, and CFD) were selected and validated in the training and the external datasets. The qRT-PCR evaluation showed that the levels of blood biomarkers (C1QC, VSIG4, and CFD) in patients with AF-CE can be used to differentiate patients with AF-CE from normal controls ( P < 0.05 ) and can effectively discriminate AF-CE from LAA stroke ( P < 0.05 ). Immune cell infiltration analysis revealed that three feature genes were correlated with immune system such as neutrophils. Clinical impact curve, calibration curves, ROC, and DCAs of the nomogram indicate that the nomogram had good performance. Our findings showed that C1QC, VSIG4, and CFD can potentially serve as diagnostic blood biomarkers of AF-CE; novel nomogram and the companion website can help clinicians to identify high-risk individuals, thus helping to guide treatment decisions for stroke patients.
Background: Recent evidence has emerged regarding the modification of the relationship between the enhancer RNA (eRNA) colorectal neoplasia differentially expressed (CRNDE) and the prognosis of patients with cancer. Nevertheless, the role of CRNDE in pan-cancer and tumour immune microenvironment (TIME) remains largely unexplored. Methods: Multiple bioinformatic methods were employed to unravel the role of elncRNA CRNDE in a wide range of cancers from the perspective of the expression patterns, prognosis, tumour immunity, and the association between CRNDE and its target gene IRX5 based on the public database. A nomogram was created by integrating independent factors. Gene set enrichment analysis (GSEA) was used to determine the potential signalling pathway mechanisms. Molecular biology experiments including RT-qPCR, MTT, Transwell, and wound-healing analyses were performed to evaluate the proliferation, migration, and invasion of glioma cells. Finally, RT-qPCR and immunohistochemistry were performed to analyse the expression and function of CRNDE in gliomas of different grades. Nissl staining was used to evaluate the potential effects of CRNDE knockdown in glioblastoma tissues. Results: CRNDE was dysregulated and associated with clinical features in 15 of the 33 cancer types. The survival analysis showed that high CRNDE expression might lead to a worsened prognosis among the six cancer types. CRNDE might be involved in immune regulation in multiple cancer types. CRNDE correlated with multiple tumours and immune-related pathways. Additionally, CRNDE knockdown inhibited glioma cell proliferation, migration, and invasion. Nissl staining confirmed that CRNDE siRNA notably decreased tumour growth. A stronger correlation between immune cells and CRNDE/IRX5 in lower-grade glioma than in glioblastoma multiforme tissues, and an association with IRX5 and immune checkpoint gene NRP1 were observed. Conclusions: An Enhancer RNA CRNDE may serve as a biomarker for cancer immunologic infiltration and poor prognosis, providing a new approach for cancer treatment.
BackgroundLung cancer is the deadliest and most diagnosed type of cancer worldwide. The 5-year survival rate of lung adenocarcinoma (LUAD) dropped significantly when tumor stages advanced. Patients who received surgically resecting at the pre-invasive stage had a 5-year survival rate of nearly 100%. However, the study on the differences in gene expression profiles and immune microenvironment among pre-invasive LUAD patients is still lacking.MethodsIn this study, the gene expression profiles of three pre-invasive LUAD stages were compared using the RNA-sequencing data of 10 adenocarcinoma in situ (AIS) samples, 12 minimally invasive adenocarcinoma (MIA) samples, and 10 invasive adenocarcinoma (IAC) samples.ResultsThe high expression levels of PTGFRN (Hazard Ratio [HR] = 1.45; 95% Confidence Interval [CI]: 1.08-1.94; log-rank P = 0.013) and SPP1 (HR = 1.44; 95% CI: 1.07-1.93; log-rank P = 0.015) were identified to be associated with LUAD prognosis. Moreover, the early LUAD invasion was accompanied by the enhancement of antigen presentation ability, reflected by the increase of myeloid dendritic cells infiltration rate (Cuzick test P < 0.01) and the upregulation of seven important genes participating in the antigen presentation, including HLA-A (Cuzick test P = 0.03), MICA (Cuzick test P = 0.01), MICB (Cuzick test P = 0.01), HLA-DPA1 (Cuzick test P = 0.04), HLA-DQA2 (Cuzick test P < 0.01), HLA-DQB1 (Cuzick test P = 0.03), and HLA-DQB2 (Cuzick test P < 0.01). However, the tumor-killing ability of the immune system was inhibited during this process, as there were no rising cytotoxic T cell activity (Cuzick test P = 0.20) and no increasing expression in genes encoding cytotoxic proteins. ConclusionIn all, our research elucidated the changes in the immune microenvironment during early-stage LUAD evolution and may provide a theoretical basis for developing novel early-stage lung cancer therapeutic targets.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.