Although insulin-like growth factor 1 (IGF-1) has been associated with retinopathy, proof of a direct relationship has been lacking. Here we show that an IGF-1 receptor antagonist suppresses retinal neovascularization in vivo, and infer that interactions between IGF-1 and the IGF-1 receptor are necessary for induction of maximal neovascularization by vascular endothelial growth factor (VEGF). IGF-1 receptor regulation of VEGF action is mediated at least in part through control of VEGF activation of p44/42 mitogen-activated protein kinase, establishing a hierarchical relationship between IGF-1 and VEGF receptors. These findings establish an essential role for IGF-1 in angiogenesis and demonstrate a new target for control of retinopathy. They also explain why diabetic retinopathy initially increases with the onset of insulin treatment. IGF-1 levels, low in untreated diabetes, rise with insulin therapy, permitting VEGF-induced retinopathy.
Aim: To generate a mouse model for slow progressive retinal neovascularisation through vascular endothelial growth factor (VEGF) upregulation. Methods: Transgenic mice were generated via microinjection of a DNA construct containing the human VEGF 165 (hVEGF) gene driven by a truncated mouse rhodopsin promoter. Mouse eyes were characterised clinically and histologically and ocular hVEGF levels assayed by ELISA. Results: One transgenic line expressing low hVEGF levels showed mild clinical changes such as focal fluorescein leakage, microaneurysms, venous tortuosity, capillary non-perfusion and minor neovascularisation, which remained stable up to 3 months postnatal. Histologically, there were some disturbance and thinning of inner and outer nuclear layers, with occasional focal areas of neovascularisation. By contrast, three other lines expressing high hVEGF levels presented with concomitantly severe phenotypes. In addition to the above, clinical features included extensive neovascularisation, haemorrhage, and retinal detachment; histologically, focal to extensive areas of neovascularisation associated with retinal folds, cell loss in the inner and outer nuclear layers, and partial retinal detachment were common. Conclusions: The authors generated four hVEGF overexpressing transgenic mouse lines with phenotypes ranging from mild to severe neovascularisation. These models are a valuable research tool to study excess VEGF related molecular and cellular changes and provide additional opportunities to test anti-angiogenic therapies.
Vascular endothelial growth factor (VEGF) is one of the major mediators of retinal ischemia-associated neovascularization. We have shown here that adeno-associated virus (AAV)-mediated expression of sFlt-1, a soluble form of the Flt-1 VEGF receptor, was maintained for up to 8 and 17 months postinjection in mice and in monkeys, respectively. The expression of sFlt-1 was associated with the long-term (8 months) regression of neovascular vessels in 85% of trVEGF029 eyes. In addition, it resulted in the maintenance of retinal morphology, as the majority of the treated trVEGF029 eyes (75%) retained high numbers of photoreceptors, and in retinal function as measured by electroretinography. AAV-mediated expression of sFlt-1 prevented the development of laser photocoagulation-induced choroidal neovascularization in all treated monkey eyes. There were no clinically or histologically detectable signs of toxicity present in either animal model following AAV.sFlt injection. These results suggest that AAV-mediated secretion gene therapy could be considered for treatment of retinal and choroidal neovascularizations.
To achieve stable and localised ocular anti-angiogenic therapy, we explored the use of recombinant adeno-associated virus (rAAV)-mediated secretion gene therapy (SGT). In this study, we generated a rAAV vector encoding soluble VEGF receptor 1, sFlt-1 (AAV-CMV.sflt) and determined its ability to inhibit cautery-induced corneal NV and laser-induced cho-
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.