In this paper, we introduce the concept of τ -function which generalizes the concept of w-distance studied in the literature. We establish a generalized Ekeland's variational principle in the setting of lower semicontinuous from above and τ -functions. As applications of our Ekeland's variational principle, we derive generalized Caristi's (common) fixed point theorems, a generalized Takahashi's nonconvex minimization theorem, a nonconvex minimax theorem, a nonconvex equilibrium theorem and a generalized flower petal theorem for lower semicontinuous from above functions or lower semicontinuous functions in the complete metric spaces. We also prove that these theorems also imply our Ekeland's variational principle.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.