Recent technological advances have lead to the emergence of wireless sensor and actor networks (WSAN) which sensors gather the information for an event and actors perform the appropriate actions. Since sensors are prone to failure due to energy depletion, hardware failure, and communication link errors, designing an efficient fault tolerance mechanism becomes an important issue in WSAN. However, most research focus on communication link fault tolerance without considering sensing fault tolerance on paper survey. In this situation, actor may perform incorrect action by receiving error sensing data. To solve this issue, fault tolerance by quartile method (FTQM) is proposed in this paper. In FTQM, it not only determines the correct data range but also sifts the correct sensors by data discreteness. Therefore, actors could perform the appropriate actions in FTQM. Moreover, FTQM also could be integrated with communication link fault tolerance mechanism. In the simulation results, it demonstrates FTQM has better predicted rate of correct data, the detected tolerance rate of temperature, and the detected temperature compared with the traditional sensing fault tolerance mechanism. Moreover, FTQM has better performance when the real correct data rate and the threshold value of failure are varied.
Keywords-wireless sensor and actor networks, communication link fault tolerance, sensing fault tolerance, quartile method, data discreteness.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.