The utilization of waste rubber tires is of great value for environment protection and resource recovery, which can also improve the properties of matrix asphalt. The adhesion characteristics were evaluated for crumb rubber modified asphalt and limestone aggregate using the surface free energy (SFE) approach. Four types of matrix asphalt and four rubber contents were used to prepare the crumb rubber modified asphalt. The contact angle of matrix and crumb rubber modified asphalt was obtained, and the SFE indicators (dispersion, polar component, and compatibility rate—CR) were calculated. Moreover, the water stability tests were conducted using one matrix and rubber modified asphalt in order to investigate the relationship between SFE and water stability indicators. Results showed that the total SFE, dispersion component, adhesion work, and CR increased with the addition of crumb rubber, while the polar component and spalling work decreased. The types of asphalt had different influences on SFE indicators. The results from analysis of variation (ANOVA) indicated asphalt type and rubber content had significant influence on the adhesion work, spalling work and CR, and the influence of asphalt type was greater than that of rubber content. Additionally, the retained Marshall Stability and tensile strength ratio had better correlation with adhesion work and CR, but less with spalling work. The presented results demonstrated that the type of matrix asphalt played an important role in the adhesion characteristics for the crumb rubber modified asphalt.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.