Amyotrophic lateral sclerosis (ALS) is a rapidly progressing and fatal disease characterized by muscular atrophy because of loss of upper and lower motor neurons. Histopathologically, most patients with ALS have abnormal cytoplasmic accumulation and aggregation of the nuclear RNA-regulating protein TAR DNA-binding protein 43 (TDP-43). Pathogenic mutations in the TARDBP gene that encode TDP-43 have been identified in familial ALS. We have previously reported transgenic mice with neuronal expression of human TDP-43 carrying the pathogenic A315T mutation (iTDP-43 mice), presenting with early-onset motor deficits in adolescent animals. Here, we analyzed aged iTDP-43 mice, focusing on the spatiotemporal profile and progression of neurodegeneration in upper and lower motor neurons. Magnetic resonance imaging and histologic analysis revealed a differential loss of upper motor neurons in a hierarchical order as iTDP-43 mice aged. Furthermore, we report progressive gait problems, profound motor deficits, and muscle atrophy in aged iTDP-43 mice. Despite these deficits and TDP-43 pathologic disorders in lower motor neurons, stereological analysis did not show cell loss in spinal cords. Taken together, neuronal populations in aging iTDP-43 mice show differential susceptibility to the expression of human TDP-43.
Tau pathology initiates in defined brain regions and is known to spread along neuronal connections as symptoms progress in Alzheimer’s disease (AD) and other tauopathies. This spread requires the release of tau from donor cells, but the underlying molecular mechanisms remained unknown. Here, we established the interactome of the C-terminal tail region of tau and identified syntaxin 8 (STX8) as a mediator of tau release from cells. Similarly, we showed the syntaxin 6 (STX6), part of the same SNARE family as STX8 also facilitated tau release. STX6 was previously genetically linked to progressive supranuclear palsy (PSP), a tauopathy. Finally, we demonstrated that the transmembrane domain of STX6 is required and sufficient to mediate tau secretion. The differential role of STX6 and STX8 in alternative secretory pathways suggests association of tau with different secretory processes. Taken together, both syntaxins, STX6 and STX8, may contribute to AD and PSP pathogenesis by mediating release of tau from cells and facilitating pathology spreading.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.