: Elevated ozone level affects micronutrients bioavailability in soil and their concentrations in wheat tissues. Plant Soil Environ., 63: 381-387.To investigate the bioavailability of essential micronutrients (Fe, Mn, Cu, Zn) in soil-plant system, sequential scheme of weak acid soluble (WAS), reducible (RED) and oxidizable (OXI) fractions was used to evaluate the bioavailability of micronutrients in different soil depths. The results revealed that at the tillering stage elevated O 3 concentration significantly increased WAS-Fe at 0-5 cm and 10-15 cm soils by 69.11% and 59.72%, respectively. At the ripening stage, both WAS-Cu and RED-Cu were significantly increased in elevated O 3 treatment compared to control, while WAS-Mn only showed significant in 0-5 cm soil. In bulk soil, WAS-Zn and RED-Zn concentrations were generally greater than those in control, which was more evident at 10-15 cm soil. Besides, O 3 decreased the whole plant biomass by 14.63% and increased the root to shoot ratio. Elevated O 3 significantly increased grain Fe, Mn and Cu concentrations by 9.37, 36.68 and 48.18%, respectively, while it decreased Zn by 17.09%. It can be inferred that altered micronutrients bioavailability in soil and nutrients uptake in plants are likely associated with the changed soil chemical properties and plant physiology in response to the rising O 3 level.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.