Malignant hyperthermia (MH) is a life-threatening disorder characterized by skeletal muscle rigidity and elevated body temperature in response to halogenated anesthetics such as isoflurane or halothane. Mutation of tyrosine 522 of RyR1 (the predominant skeletal muscle calcium release channel) to serine has been associated with human malignant hyperthermia. In the present study, mice created harboring this mutation were found to represent the first murine model of human malignant hyperthermia. Mice homozygous for the Y522S mutation exhibit skeletal defects and die during embryonic development or soon after birth. Heterozygous mice, which correspond to the human occurrence of this mutation, are MH susceptible, experiencing whole body contractions and elevated core temperatures in response to isoflurane exposure or heat stress. Skeletal muscles from heterozygous mice exhibit increased susceptibility to caffeine- and heat-induced contractures in vitro. In addition, the heterozygous expression of the mutation results in enhanced RyR1 sensitivity to activation by temperature, caffeine, and voltage but not uncompensated sarcoplasmic reticulum calcium leak or store depletion. We conclude that the heterozygous expression of the Y522S mutation confers susceptibility to both heat- and anesthetic-induced MH responses.
SUMMARY FK506 binding protein 12 (FKBP12) binds the immunosuppressant drugs FK506 and rapamycin and regulates several signaling pathways, including mammalian target of rapamycin (mTOR) signaling. We determined whether the brain-specific disruption of the FKBP12 gene altered mTOR signaling, synaptic plasticity, and memory. Biochemically, the FKBP12-deficient mice displayed increases in basal mTOR phosphorylation, mTOR-Raptor interactions, and p70 S6 kinase (S6K) phosphorylation. Electrophysiological experiments revealed that FKBP12 deficiency was associated with an enhancement in long-lasting hippocampal long-term potentiation (LTP). The LTP enhancement was resistant to rapamycin, but not anisomycin, suggesting that altered translation control is involved in the enhanced synaptic plasticity. Behaviorally, FKBP12 conditional knockout (cKO) mice displayed enhanced contextual fear memory, and autistic/obsessive-compulsive-like perseveration in several assays including the water maze, Y-maze reversal task, and the novel object recognition task. Our results indicate that FKBP12 plays a critical role in the regulation of mTOR-Raptor interactions, LTP, memory, and perseverative behaviors.
The cardiac L-type voltage-dependent calcium channel is responsible for initiating excitation-contraction coupling. Three sequences (amino acids 1609-1628, 1627-1652, and 1665-1685, designated A, C, and IQ, respectively) of its alpha(1) subunit contribute to calmodulin (CaM) binding and Ca(2+)-dependent inactivation. Peptides matching the A, C, and IQ sequences all bind Ca(2+)CaM. Longer peptides representing A plus C (A-C) or C plus IQ (C-IQ) bind only a single molecule of Ca(2+)CaM. Apocalmodulin (ApoCaM) binds with low affinity to the IQ peptide and with higher affinity to the C-IQ peptide. Binding to the IQ and C peptides increases the Ca(2+) affinity of the C-lobe of CaM, but only the IQ peptide alters the Ca(2+) affinity of the N-lobe. Conversion of the isoleucine and glutamine residues of the IQ motif to alanines in the channel destroys inactivation (Zühlke et al., 2000). The double mutation in the peptide reduces the interaction with apoCaM. A mutant CaM unable to bind Ca(2+) at sites 3 and 4 (which abolishes the ability of CaM to inactivate the channel) binds to the IQ, but not to the C or A peptide. Our data are consistent with a model in which apoCaM binding to the region around the IQ motif is necessary for the rapid binding of Ca(2+) to the C-lobe of CaM. Upon Ca(2+) binding, this lobe is likely to engage the A-C region.
The amygdala is a brain area critical for the formation of fear memories. However, the nature of the teaching signal(s) that drive plasticity in the amygdala are still under debate. Here, we use optogenetic methods to investigate the contribution of ventral tegmental area (VTA) dopamine neurons to auditory-cued fear learning in male mice. Using anterograde and retrograde labeling, we found that a sparse and relatively evenly distributed population of VTA neurons projects to the basal amygdala (BA). In vivo optrode recordings in behaving mice showed that many VTA neurons, among them putative dopamine neurons, are excited by footshocks, and acquire a response to auditory stimuli during fear learning. Combined cfos imaging and retrograde labeling in dopamine transporter (DAT) Cre mice revealed that a large majority of BA projectors (.95%) are dopamine neurons, and that BA projectors become activated by the tone-footshock pairing of fear learning protocols. Finally, silencing VTA dopamine neurons, or their axon terminals in the BA during the footshock, reduced the strength of fear memory as tested 1 d later, whereas silencing the VTA-central amygdala (CeA) projection had no effect. Thus, VTA dopamine neurons projecting to the BA contribute to fear memory formation, by coding for the saliency of the footshock event and by signaling such events to the basal amygdala.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.