-Attributed to its advantages of super mechanical flexibility, very low-temperature processing, and compatibility with low cost and high throughput manufacturing, organic thin-film transistor (OTFT) technology is able to bring electrical, mechanical, and industrial benefits to a wide range of new applications by activating nonflat surfaces with flexible displays, sensors, and other electronic functions. Despite both strong application demand and these significant technological advances, there is still a gap to be filled for OTFT technology to be widely commercially adopted. This paper provides a comprehensive review of the current status of OTFT technologies ranging from material, device, process, and integration, to design and system applications, and clarifies the real challenges behind to be addressed.
With its excellent mechanical flexibility, low-cost and low-temperature processing, the solution processed organic field-effect transistor (OFET) is a promising platform technology for developing ubiquitous sensor applications in digital health, environment monitoring and Internet of Things. However, a contradiction between achieving low voltage operation and having stable performance severely hinder the technology to become commercially viable. This work shows that, by reducing the sub-gap density of states (DOS) at the channel for low operation voltage and using a proper low-k non-polar polymer dielectric layer, such an issue can be addressed. Stable electrical properties after either being placed for weeks or continuously prolonged bias stressing for hours in ambient air are achieved for all solution processed unencapsulated OFETs with the channel being exposed to the ambient air for analyte detection. The fabricated device presents a steep subthreshold swing less than 100 mV/decade, and an ON/OFF ratio of 106 at a voltage swing of 3 V. The low voltage and stable operation allows the sensor made of the OFET to be incorporated into a battery-powered electronic system for continuously reliable sensing of ammonia vapor in ambient air with very small power consumption of about 50 nW.
A soft-hard template-assisted method toward the unconventional free-standing ordered mesoporous carbon sheets (OMCSs) with uniform hexagonal morphology is developed by applying MgAl-layered double hydroxide (MgAl-LDH) as the hard template, triblock copolymer F127 as the soft template, and phenolic resols as the carbon sources. It is found that the surface of MgAl-LDH can induce the morphology variation of resol-F127 monomicelles, leading to the formation of vertically or horizontally aligned mesopore arrays in the OMCSs, which can in turn determine their electrochemical energy storage behaviors in supercapacitors with different configurations. In an all-solid-state supercapacitor with two face-to-face electrodes, an OMCS with vertical mesopores manifests the best performance among the samples. By contrast, in a micro-supercapacitor with in-plane film-like electrodes, an OMCS with horizontal mesopores delivers higher energy/power densities than the other OMCSs, which are also comparable to the state-of-the-art supercapacitors based on ordered mesoporous carbons. The achievement of uniform carbon sheets with orientation-adjustable mesopore arrays can help elucidate their electrochemical storage mechanism and allow the optimization of the performances according to the device configuration, thus providing a powerful tool for the manipulation of energy storage devices on the nanoscale.
Organic electrochemical transistors (OECTs) provide the opportunity to fabricate flexible biosensors with high sensitivity. However, there are currently very few methods to improve the selectivity of OECT sensors. In this work, nitrogen/oxygen‐codoped carbon cloths (NOCCs) are prepared by the carbonization of polyaniline‐wrapped carbon cloths at 750 °C under different atmospheres. The resulting NOCC electrodes exhibit different electrochemical sensing behaviors toward ascorbic acid (AA) and dopamine (DA), enabling the fabrication of OECT sensors with high sensitivity and selectivity that are comparable to the state‐of‐the‐art OECT sensors for AA and DA. The structural characterization and theoretical calculation reveal that the electrochemical sensing behaviors of the NOCC electrodes are closely related to their surface compositions, providing an unprecedented strategy for the design of flexible OECT sensors with high sensitivity and selectivity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.