Protocadherin 10 (PCDH10), a novel tumor suppressor gene in human cancers, is located in a common deleted region at chromosome 4q28 in colorectal cancer (CRC). This study aimed to ascertain the genetic loss of PCDH10 and its clinical relevance in CRC and to explore the tumor suppressor function of PCDH10. The genetic deletion of PCDH10 was determined in 171 pairs of primary tumors and corresponding normal mucosae by loss of heterozygosity study. In total, 53 carcinomas were positive for allelic loss of PCDH10. The genetic aberration was significantly associated with tumor progression and distant metastasis (p 5 0.021 and p 5 0.018, respectively) and was an independent predictor of poor survival for CRC patients (p 5 0.005). Expression of PCDH10 gene was silenced or markedly down-regulated in all of 12 CRC cell lines tested and in 41 of 53 colorectal carcinomas compared with their matched normal mucosae. Ectopic expression of PCDH10 suppressed cancer cell proliferation, anchorage-independent growth, migration and invasion in vitro. Subcutaneous injection of PCDH10-expressing CRC cells into SCID mice revealed the reduction of tumor growth compared with that observed in mock-inoculated mice. Furthermore, through intrasplenic implantation, the re-expression of PCDH10 in silenced cells restrained liver metastasis and improved survival in SCID mice. In conclusion, PCDH10 is a pivotal tumor suppressor in CRC, and the loss of its function promotes not only tumor progression but also liver metastasis. In addition, the genetic deletion of PCDH10 represents an adverse prognostic marker for the survival of patients with CRC.
The highly infectious and serious nature of coronavirus disease 2019 (COVID-19) has highlighted the need for hospital space disinfection technology and the prevention of human exposure to pathogenic environments. This research developed novel chlorine dioxide (ClO2) sterilization technology to reduce bacteria and viruses in the air and on surfaces. A smart sterilization robot system was also developed to spray disinfectants in operating theaters or patients' rooms, designed according to the results of controlled experiments and the requirements for hospital disinfection. The system was built incorporated a semi-automatic remote-controlled module and an automatic intelligent disinfection function; that is, it could operate independently according to specific epidemic prevention strategies, which were implemented using a combination of Internet of Things (IoT) applications and a gesture recognition function. The elimination of Escherichia coli (E. coli) bacteria on sample plates was 99.8 % effective. This paper reviews the evolution of various disinfection technologies and describes a disinfection robot system in detail.
This paper presents the development of a visual-perception system on a dual-arm mobile robot for human-robot interaction. This visual system integrates three subsystems. Hand gesture recognition is utilized to trigger human-robot interaction. Engagement and intention of the participants are detected and quantified through a cognitive system. Visual servoing uses YOLO to identify the object to be tracked and hybrid, model-based tracking to follow the object’s geometry. The proposed visual-perception system is implemented in the developed dual-arm mobile robot, and experiments are conducted to validate the proposed method’s effects on human-robot interaction applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.