We performed first-principles calculations to reveal the possibility of applying pristine, defective, and B-doped graphene in feasible negative electrode materials of ion batteries. It is found that the barriers for ions are too high to diffuse through the original graphene, however the reduced barriers are obtained by introducing defects (single vacancy, double vacancy, Stone–Wales defect) in the graphene. Among the three types of defects, the systems with a double vacancy could provide the lowest barriers of 1.49 and 6.08 eV for Li and Na, respectively. Furthermore, for all kinds of B-doped graphene with the vacancy, the systems with a double vacancy could also provide the lowest adsorption energies and diffusion barriers. Therefore, undoped and B-doped graphene with a double vacancy turn out to be the most promising candidates that can replace pristine graphene for anode materials in ion batteries.
Enzymatic reporters have been widely applied to study various biological processes because they can amplify signal through enzymatic reactions and provide good sensitivity. However, there is still a need for modular motifs for designing a series of enzymatic reporters. Here, we report a modular peroxidase-based motif, named CLAPon, that features acid–base coil-caged enhanced ascorbate peroxidase (APEX). We demonstrate the modularity of CLAPon by designing a series of reporters for detecting protease activity and protein–protein interactions (PPIs). CLAPon for protease activity showed a 390-fold fluorescent signal increase upon tobacco etch virus protease cleavage. CLAPon for PPI detection (PPI-CLAPon) has two variants, PPI-CLAPon1.0 and 1.1. PPI-CLAPon1.0 showed a signal-to-noise ratio (SNR) of up to 107 for high-affinity PPI pairs and enabled imaging with sub-cellular spatial resolution. However, the more sensitive PPI-CLAPon1.1 is required for detecting low-affinity PPI pairs. PPI-CLAPon1.0 was further engineered to a reporter with light-dependent temporal gating, called LiPPI-CLAPon1.0, which can detect a 3-min calcium-dependent PPI with an SNR of 17. LiPPI-CLAPon enables PPI detection within a specific time window with rapid APEX activation and diverse readout. Lastly, PPI-CLAPon1.0 was designed to have chemical gating, providing more versatility to complement the LiPPI-CLAPon. These CLAPon-based reporter designs can be broadly applied to study various signaling processes that involve protease activity and PPIs and provide a versatile platform to design various genetically encoded reporters.
In recent years, intelligent intrusion detection techniques based on machine learning have been the research spots in the field of intrusion detection. Whereas, as network traffic and network scale increase continually, some current machine learning algorithms can't meet the requirement of the network intrusion detection models for efficiency and accuracy, which restricts the application of machine learning into intrusion detection. In order to enhance the availability and practicality of intelligent intrusion detection system based on machine learning in high-speed network, an improved fast inductive learning method for intrusion detection (FILMID) is designed and implemented. Accordingly, an efficient intrusion detection model based on FILMID algorithm is presented.The experiment results on the standard testing dataset validate the effectiveness of the FILMID based intrusion detection model.
Load‐bearing biological staggered composites, like nacre, teeth, and bone, possess an exceptional combination of material properties like high stiffness and high toughness. To date, most of the analytical research are for nacre‐like bio‐inspired staggered composites, with highly overlapped platelets. But the collagen fibril‐like staggered composites, with slender or barely overlapped platelets, are out of their scope. This motivates this work. In this paper, based on the previous research, according to the elastic‐viscoelastic corresponding principle, an analytical model for dynamic properties of general bio‐inspired staggered composites is presented. Moreover, the effect of loading frequency in a wide range is studied. The accuracy of the model is verified by comparison with existing models and finite element simulations. Besides, parametric analyses and sensitivity analysis are conducted thoroughly. The results reveal that besides the platelet concentration and the platelet aspect ratio, the platelet overlap ratio also influences the damping behavior of bio‐inspired staggered composites to a certain extent; for biological/biomimetic composites with a larger overlap ratio, higher loss modulus is possible to be achieved, and the optimal aspect ratio is mostly within [5, 30]. These findings are of great significance to the optimal design of bio‐inspired engineering materials in the future.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.