As a non-invasive imaging tool, Positron Emission Tomography (PET) plays an important role in brain science and disease research. Dynamic acquisition is one way of brain PET imaging. Its wide application in clinical research has often been hindered by practical challenges, such as patient involuntary movement, which could degrade both image quality and the accuracy of the quantification. This is even more obvious in scans of patients with neurodegeneration or mental disorders. Conventional motion compensation methods were either based on images or raw measured data, were shown to be able to reduce the effect of motion on the image quality. As for a dynamic PET scan, motion compensation can be challenging as tracer kinetics and relatively high noise can be present in dynamic frames. In this work, we propose an image-based inter-frame motion compensation approach specifically designed for dynamic brain PET imaging. Our method has an iterative implementation that only requires reconstructed images, based on which the inter-frame subject movement can be estimated and compensated. The method utilized tracer-specific kinetic modelling and can deal with simple and complex movement patterns. The synthesized phantom study showed that the proposed method can compensate for the simulated motion in scans with 18F-FDG, 18F-Fallypride and 18F-AV45. Fifteen dynamic 18F-FDG patient scans with motion artifacts were also processed. The quality of the recovered image was superior to the one of the non-corrected images and the corrected images with other image-based methods. The proposed method enables retrospective image quality control for dynamic brain PET imaging, hence facilitates the applications of dynamic PET in clinics and research.
A distributed arithmetic coding algorithm based on source symbol purging and using the context model is proposed to solve the asymmetric Slepian–Wolf problem. The proposed scheme is to make better use of both the correlation between adjacent symbols in the source sequence and the correlation between the corresponding symbols of the source and the side information sequences to improve the coding performance of the source. Since the encoder purges a part of symbols from the source sequence, a shorter codeword length can be obtained. Those purged symbols are still used as the context of the subsequent symbols to be encoded. An improved calculation method for the posterior probability is also proposed based on the purging feature, such that the decoder can utilize the correlation within the source sequence to improve the decoding performance. In addition, this scheme achieves better error performance at the decoder by adding a forbidden symbol in the encoding process. The simulation results show that the encoding complexity and the minimum code rate required for lossless decoding are lower than that of the traditional distributed arithmetic coding. When the internal correlation strength of the source is strong, compared with other DSC schemes, the proposed scheme exhibits a better decoding performance under the same code rate.
In order to effectively improve the quality of side information in distributed video coding, we propose a side information generation scheme based on a coefficient matrix improvement model. The discrete cosine transform coefficient bands of the Wyner–Ziv frame at the encoder side are divided into entropy coding coefficient bands and distributed video coding coefficient bands, and then the coefficients of entropy coding coefficient bands are sampled, which are divided into sampled coefficients and unsampled coefficients. For sampled coefficients, an adaptive arithmetic encoder is used for lossless compression. For unsampled coefficients and the coefficients of distributed video coding coefficient bands, the low density parity check accumulate encoder is used to calculate the parity bits, which are stored in the buffer and transmitted in small amount upon decoder request. At the decoder side, the optical flow method is used to generate the initial side information, and the initial side information is improved according to the sampled coefficients by using the coefficient matrix improvement model. The experimental results demonstrate that the proposed side information generation scheme based on the coefficient matrix improvement model can effectively improve the quality of side information, and the quality of the generated side information is improved by about 0.2–0.4 dB, thereby improving the overall performance of the distributed video coding system.
The potential for the research of object tracking in computer vision has been well established, but previous object-tracking methods, which consider only continuous and smooth motion, are limited in handling abrupt motions. We introduce an efficient algorithm to tackle this limitation. A feature-driven (FD) motion model-based features from accelerated segment test (FAST) feature matching is proposed in the particle-filtering framework. Various evaluations have demonstrated that this motion model can improve existing methods' performances to handle abrupt motion significantly. The proposed model can be applied to most existing particlefilter tracking methods.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.