-defensins are cyclic octadecapeptides encoded by the modified ␣-defensin genes of certain nonhuman primates. The recent demonstration that human ␣-defensins could prevent deleterious effects of anthrax lethal toxin in vitro and in vivo led us to examine the effects of -defensins on Bacillus anthracis (Sterne). We tested rhesus -defensins 1-3, retrocyclins 1-3, and several analogues of RC-1. Low concentrations of -defensins not only killed vegetative cells of B. anthracis (Sterne) and rendered their germinating spores nonviable, they also inactivated the enzymatic activity of anthrax lethal factor and protected murine RAW-264.7 cells from lethal toxin, a mixture of lethal factor and protective antigen. Structure-function studies indicated that the cyclic backbone, intramolecular tri-disulfide ladder, and arginine residues of -defensins contributed substantially to these protective effects. Surface plasmon resonance studies showed that retrocyclins bound the lethal factor rapidly and with high affinity. Retrocyclin-mediated inhibition of the enzymatic activity of lethal factor increased substantially if the enzyme and peptide were preincubated before substrate was added. The temporal discrepancy between the rapidity of binding and the slowly progressive extent of lethal factor inhibition suggest that post-binding events, perhaps in situ oligomerization, contribute to the antitoxic properties of retrocyclins. Overall, these findings suggest that -defensins provide molecular templates that could be used to create novel agents effective against B. anthracis and its toxins.Under normal circumstances Bacillus anthracis causes human infections only in individuals exposed to infected farm animals or their spore-contaminated products. The virulence of B. anthracis primarily derives from the hardiness of its spores, an anti-phagocytic capsule that surrounds its vegetative cells (1), and two secreted binary toxins: lethal toxin (LeTx) 3 and edema toxin (EdTx). Both toxins contain protective antigen (PA, 83 kDa). LeTx also contains lethal factor (LF, 90 kDa), and EdTx contains edema factor (EF, 89 kDa). The genes for all three toxin components, PA, LF, and EF, reside on the pXO1 plasmid (2), and those responsible for capsule synthesis exist on the pXO2 plasmid (3). Both of these plasmids are required for in vivo virulence (3).EF is an adenylate cyclase (4) and LF is a zinc-dependent metalloprotease that selectively attacks certain MAPK kinases (5, 6). PA is required to allow both of the other toxin components to enter host cells (7). When PA binds a cellular receptor (8), it is cleaved into PA63 (63 kDa) and PA20 (20 kDa). The PA20 diffuses away, and the residual receptor-bound PA63 molecules self-associate into ring-shaped heptamers (9) that bind EF or LF with high affinity (10 -12). Oligomerization of PA63 leads to endocytosis, which transports the complexes to an acidic compartment (13-15). Here, the heptameric pre-pore changes into an integral-membrane pore (16, 17) that translocates EF or LF into the cytosol (18). Immu...
Meat adulteration, mainly for the purpose of economic pursuit, is widespread and leads to serious public health risks, religious violations, and moral loss. Rapid, effective, accurate, and reliable detection technologies are keys to effectively supervising meat adulteration. Considering the importance and rapid advances in meat adulteration detection technologies, a comprehensive review to summarize the recent progress in this area and to suggest directions for future progress is beneficial. In this review, destructive meat adulteration technologies based on DNA, protein, and metabolite analyses and nondestructive technologies based on spectroscopy were comparatively analyzed. The advantages and disadvantages, application situations of these technologies were discussed. In the future, determining suitable indicators or markers is particularly important for destructive methods. To improve sensitivity and save time, new interdisciplinary technologies, such as biochips and biosensors, are promising for application in the future. For nondestructive techniques, convenient and effective chemometric models are crucial, and the development of portable devices based on these technologies for onsite monitoring is a future trend. Moreover, omics technologies, especially proteomics, are important methods in laboratory detection because they enable multispecies detection and unknown target screening by using mass spectrometry databases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.