In response to iron (Fe) deficiency, dicots employ a reduction-based mechanism by inducing ferric-chelate reductase (FCR) at the root plasma membrane to enhance Fe uptake. However, the signal pathway leading to FCR induction is still unclear. Here, we found that the Fe-deficiency-induced increase of auxin and nitric oxide (NO) levels in wild-type Arabidopsis (Arabidopsis thaliana) was accompanied by up-regulation of root FCR activity and the expression of the basic helix-loop-helix transcription factor (FIT) and the ferric reduction oxidase 2 (FRO2) genes. This was further stimulated by application of exogenous auxin (a-naphthaleneacetic acid) or NO donor (S-nitrosoglutathione [GSNO]), but suppressed by either polar auxin transport inhibition with 1-naphthylphthalamic acid or NO scavenging with 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide, tungstate, or N v -nitro-L-arginine methyl ester hydrochloride. On the other hand, the root FCR activity, NO level, and gene expression of FIT and FRO2 were higher in auxin-overproducing mutant yucca under Fe deficiency, which were sharply restrained by 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide treatment. The opposite response was observed in a basipetal auxin transport impaired mutant aux1-7, which was slightly rescued by exogenous GSNO application. Furthermore, Fe deficiency or a-naphthaleneacetic acid application failed to induce Fe-deficiency responses in noa1 and nial nia2, two mutants with reduced NO synthesis, but root FCR activities in both mutants could be significantly elevated by GSNO. The inability to induce NO burst and FCR activity was further verified in a double mutant yucca noa1 with elevated auxin production and reduced NO accumulation. Therefore, we presented a novel signaling pathway where NO acts downstream of auxin to activate root FCR activity under Fe deficiency in Arabidopsis.
Recent analyses indicate that the expression of the Pim-1 protein kinase is elevated in biopsies of prostate tumors. To identify the mechanism by which the Pim kinases may affect the growth of prostate tumors, we expressed Pim-1, Pim-2, or a kinase-dead Pim-2 protein in human PC3 prostate cancer cells. On implantation of the transfectants in nude mice, the growth of the cells expressing Pim-1 or Pim-2 was significantly faster than the growth of the control cells transfected with the neomycin-resistant gene or the kinase-dead Pim-2 protein. When grown in medium, the doubling time of the Pim-1 and Pim-2 transfectants was faster (0.75 days) than that of the control cells (1.28 days). We, therefore, examined the ability of Pim to control the phosphorylation of proteins that regulate protein synthesis. On growth factor starvation or rapamycin treatment, the Pim-1 and Pim-2 transfectants maintained their ability to phosphorylate 4E-BP1 and S6 kinase, although this phosphorylation did not occur in the control-transfected PC3 cells. We have found that the cellular levels of c-Myc were elevated in the Pim-1 and Pim-2 transfectants under these conditions. The Pim-1 and Pim-2 transfectants have lower levels of serine/threonine protein phosphatase 2A (PP2A) activity and the A-and B-subunit B56; of the PP2A phosphatase do not coimmunoprecipitate in these cells. Thus, the effects of Pim on PP2A activity may mediate the levels of c-Myc and the phosphorylation of proteins needed for increased protein synthesis. Both of these changes could have a significant impact on tumor growth. (Mol Cancer Res 2005;3(8):443 -51)
The increases in atmospheric carbon dioxide (CO 2 ) concentrations can enhance plant growth and change their nutrient demands. We report that when tomato (Lycopersicon esculentum 'Zheza 809') plants were grown in iron (Fe)-limited medium (with hydrous ferric iron oxide) and elevated CO 2 (800 mL L 21 ), their biomass and root-to-shoot ratio were greater than plants grown in ambient CO 2 (350 mL L 21). Furthermore, the associated increase in Fe concentrations in the shoots and roots alleviated Fe-deficiency-induced chlorosis. Despite the improved nutrient status of plants grown in Fe-limited medium under elevated CO 2 , the Fe-deficiency-induced responses in roots, including ferric chelate reductase activity, proton secretion, subapical root hair development, and the expression of FER, FRO1, and IRT genes, were all greater than plants grown in the ambient CO 2 . The biomass of plants grown in Fe-sufficient medium was also increased by the elevated CO 2 treatment, but changes in tissue Fe concentrations and Fe deficiency responses were not observed. These results suggest that the improved Fe nutrition and induction of Fe-deficient-induced responses in plants grown in Fe-limited medium under elevated CO 2 are caused by interactions between elevated CO 2 and Fe deprivation. Elevated CO 2 also increased the nitric oxide (NO) levels in roots, but treatment with the NO scavenger cPTIO inhibited ferric chelate reductase activity and prevented the accumulation of LeFRO1, LeIRT1, and FER transcripts in roots of the Fe-limited plants. These results implicate some involvement of NO in enhancing Fedeficiency-induced responses when Fe limitation and elevated CO 2 occur together. We propose that the combination of elevated CO 2 and Fe limitation induces morphological, physiological, and molecular responses that enhance the capacity for plants to access and utilize Fe from sparingly soluble sources, such as Fe(III)-oxide.
Acyl Activating Enzyme3 (AAE3) was identified to be involved in the catabolism of oxalate, which is critical for seed development and defense against fungal pathogens. However, the role of AAE3 protein in abiotic stress responses is unknown. Here, we investigated the role of rice bean (Vigna umbellata) VuAAE3 in Al tolerance. Recombinant VuAAE3 protein has specific activity against oxalate, with K m = 121 6 8.2 mM and V max of 7.7 6 0.88 mmol min 21 mg 21 protein, indicating it functions as an oxalyl-CoA synthetase. VuAAE3-GFP localization suggested that this enzyme is a soluble protein with no specific subcellular localization. Quantitative reverse transcription-PCR and VuAAE3 promoter-GUS reporter analysis showed that the expression induction of VuAAE3 is mainly confined to rice bean root tips. Accumulation of oxalate was induced rapidly by Al stress in rice bean root tips, and exogenous application of oxalate resulted in the inhibition of root elongation and VuAAE3 expression induction, suggesting that oxalate accumulation is involved in Al-induced root growth inhibition. Furthermore, overexpression of VuAAE3 in tobacco (Nicotiana tabacum) resulted in the increase of Al tolerance, which was associated with the decrease of oxalate accumulation. In addition, NtMATE and NtALS3 expression showed no difference between transgenic lines and wildtype plants. Taken together, our results suggest that VuAAE3-dependent turnover of oxalate plays a critical role in Al tolerance mechanisms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.