Purpose: Circular RNAs (circRNAs), a novel class of noncoding RNAs, have recently drawn lots of attention in the pathogenesis of human cancers. However, the role of circRNAs in cancer cells epithelial-mesenchymal transition (EMT) remains unclear. In this study, we aimed to identify novel circRNAs that regulate urothelial carcinoma of the bladder (UCB) cells' EMT and explored their regulatory mechanisms and clinical significance in UCBs. Experimental Design: We first screened circRNA expression profiles using a circRNA microarray in paired UCB and normal tissues, and then studied the clinical significance of an upregulated circRNA, circPRMT5, in a large cohort of patients with UCB. We further investigated the functions and underlying mechanisms of circPRMT5 in UCB cells' EMT. Moreover, we evaluated the regulation effect of circPRMT5 on miR-30c, and its target genes, SNAIL1 and E-cadherin, in two independent cohorts from our institute and The Cancer Genome Atlas (TCGA). Results: We demonstrated that upregulated expression of circPRMT5 was positively associated with advanced clinical stage and worse survival in patients with UCB. We further revealed that circPRMT5 promoted UCB cell's EMT via sponging miR-30c. Clinical analysis from two independent UCB cohorts showed that the circPRMT5/miR-30c/SNAIL1/E-cadherin pathway was essential in supporting UCB progression. Importantly, we identified that circPRMT5 was upregulated in serum and urine exosomes from patients with UCB, and significantly correlated with tumor metastasis. Conclusions: CircPRMT5 exerts critical roles in promoting UCB cells' EMT and/or aggressiveness and is a prognostic biomarker of the disease, suggesting that circPRMT5 may serve as an exploitable therapeutic target for patients with UCB.
While most large river-deltas in the world are facing the risk of subsidence and erosion in the Anthropocene, it is suspected that the Changjiang submerged delta (CSD) could be subjected to the impacts of the world's largest dam, the Three Gorges Dam (TGD). Here we firstly indicate that the CSD went through high accumulation (1958–1978); slight accumulation (1978–1997), slight erosion (1997–2002); and high accumulation (2002–2009), despite the 70% reduction of the sediment load from upstream since the operation of the TGD in 2003. Meanwhile, at the depocenter of the submerged delta, the accumulation maintained a high rate of 10 cm/yr during 1958–2009. This suggests on a longer term, the distal sediment source from the upstream had little effect on the CSD. Within this time frame the changes in the partition of sediment load among the branching channels of the Changjiang Estuary could likely control the shifting of the depocenter of the CSD on a decadal time scale. Episodic extreme floods and storm surges also increased the magnitude of deposition and erosion of the CSD on short-term scales. A re-evaluation of the impacts of TGD on the CSD is urgently needed.
Chiral aldehyde catalysis is uniquely suitable for the direct asymmetric α-functionalization of N-unprotected amino acids, because aldehydes can reversibly form imines. However, there have been few successful reports of these transformations. In fact, only chiral aldehyde catalyzed aldol reactions of amino acids and alkylation of 2-amino malonates have been reported with good chiral induction. Here, we report a novel type of chiral aldehyde catalyst based on face control of the enolate intermediates. The resulting chiral aldehyde is the first efficient nonpyridoxal-dependent catalyst that can promote the direct asymmetric α-functionalization of N-unprotected glycine esters. Possible transition states and the proton transfer process were investigated by density functional theory calculations.
Least squares alignment of the E. coli pyruvate dehydrogenase multienzyme complex E1 subunit and yeast transketolase crystal structures indicates a general structural similarity between the two enzymes and provides a plausible location for a short-loop region in the E1 structure that was unobserved due to disorder. The residue H407, located in this region, is shown to be able to penetrate the active site. Suggested by this comparison, the H407A E1 variant was created, and H407 was shown to participate in the reductive acetylation of both an independently expressed lipoyl domain and the intact 1-lipoyl E2 subunit. While the H407A substitution only modestly affected the reaction through pyruvate decarboxylation (ca. 14% activity compared to parental E1), the overall complex has a much impaired activity, at most 0.15% compared to parental E1. Isothermal titration calorimetry measurements show that the binding of the lipoyl domain to the H407A E1 variant is much weaker than that to parental E1. At the same time, mass spectrometric measurements clearly demonstrate much impaired reductive acetylation of the independently expressed lipoyl domain and of the intact 1-lipoyl E2 by the H407A variant compared to the parental E1. A proposal is presented to explain the remarkable conservation of the three-dimensional structure at the active centers of the E. coli E1 subunit and transketolase on the basis of the parallels in the ligation-type reactions carried out and the need to protonate a very weak acid, a dithiolane sulfur atom in the former, and a carbonyl oxygen atom in the latter.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.