Lung 4D computed tomography (4D-CT) plays an important role in high-precision radiotherapy because it characterizes respiratory motion, which is crucial for accurate target definition. However, the manual segmentation of a lung tumor is a heavy workload for doctors because of the large number of lung 4D-CT data slices. Meanwhile, tumor segmentation is still a notoriously challenging problem in computer-aided diagnosis. In this paper, we propose a new method based on an improved graph cut algorithm with context information constraint to find a convenient and robust approach of lung 4D-CT tumor segmentation. We combine all phases of the lung 4D-CT into a global graph, and construct a global energy function accordingly. The sub-graph is first constructed for each phase. A context cost term is enforced to achieve segmentation results in every phase by adding a context constraint between neighboring phases. A global energy function is finally constructed by combining all cost terms. The optimization is achieved by solving a max-flow/min-cut problem, which leads to simultaneous and robust segmentation of the tumor in all the lung 4D-CT phases. The effectiveness of our approach is validated through experiments on 10 different lung 4D-CT cases. The comparison with the graph cut without context constraint, the level set method and the graph cut with star shape prior demonstrates that the proposed method obtains more accurate and robust segmentation results.
Dynamic cerebral perfusion x-ray computed tomography (PCT) imaging has been advocated to quantitatively and qualitatively assess hemodynamic parameters in the diagnosis of acute stroke or chronic cerebrovascular diseases. However, the associated radiation dose is a significant concern to patients due to its dynamic scan protocol. To address this issue, in this paper we propose an image restoration method by utilizing coupled dictionary learning (CDL) scheme to yield clinically acceptable PCT images with low-dose data acquisition. Specifically, in the present CDL scheme, the 2D background information from the average of the baseline time frames of low-dose unenhanced CT images and the 3D enhancement information from normal-dose sequential cerebral PCT images are exploited to train the dictionary atoms respectively. After getting the two trained dictionaries, we couple them to represent the desired PCT images as spatio-temporal prior in objective function construction. Finally, the low-dose dynamic cerebral PCT images are restored by using a general DL image processing. To get a robust solution, the objective function is solved by using a modified dictionary learning based image restoration algorithm. The experimental results on clinical data show that the present method can yield more accurate kinetic enhanced details and diagnostic hemodynamic parameter maps than the state-of-the-art methods.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.