Electron-pair bonding is a central chemical paradigm. Here, we show that alongside the two classical covalent and ionic bond families, there exists a class of charge-shift (CS) bonds wherein the electron-pair fluctuation has the dominant role. Charge-shift bonding shows large covalent-ionic resonance interaction energy, and depleted charge densities, and features typical to repulsive interactions, albeit the bond itself may well be strong. This bonding type is rooted in a mechanism whereby the bond achieves equilibrium defined by the virial ratio. The CS bonding territory involves, for example, homopolar bonds of compact electronegative and/or lone-pair-rich elements, heteropolar bonds of these elements among themselves and with other atoms (for example, the metalloids, such as silicon and germanium), hypercoordinated molecules, and bonds whose covalent components are weakened by exchange-repulsion strain (as in [1.1.1]propellane). Here, we discuss experimental manifestations of CS bonding in chemistry, and outline new directions demonstrating the portability of the new concept.
Triple bonding is conventionally considered to be the limit for multiply bonded main group elements, despite higher metal-metal bond orders being frequently observed for transition metals and lanthanides/actinides. Here, using high-level theoretical methods, we show that C(2) and its isoelectronic molecules CN(+), BN and CB(-) (each having eight valence electrons) are bound by a quadruple bond. The bonding comprises not only one σ- and two π-bonds, but also one weak 'inverted' bond, which can be characterized by the interaction of electrons in two outwardly pointing sp hybrid orbitals. A simple way of assessing the energy of the fourth bond is proposed and is found to be ~12-17 kcal mol(-1) for the isoelectronic species studied, and thus stronger than a hydrogen bond. In contrast, the analogues of C(2) that contain higher-row elements, such as Si(2) and Ge(2), exhibit only double bonding.
An ab initio nonorthogonal valence bond program, called XMVB, is described in this article. The XMVB package uses Heitler-London-Slater-Pauling (HLSP) functions as state functions, and calculations can be performed with either all independent state functions for a molecule or preferably a few selected important state functions. Both our proposed paired-permanent-determinant approach and conventional Slater determinant expansion algorithm are implemented for the evaluation of the Hamiltonian and overlap matrix elements among VB functions. XMVB contains the capabilities of valence bond self-consistent field (VBSCF), breathing orbital valence bond (BOVB), and valence bond configuration interaction (VBCI) computations. The VB orbitals, used to construct VB functions, can be defined flexibly in the calculations depending on particular applications and focused problems, and they may be strictly localized, delocalized, or bonded-distorted (semidelocalized). The parallel version of XMVB based on MPI (Message Passing Interface) is also available.
Steric effect dominates: Ab initio valence bond and block‐localized wavefunction methods are used to estimate the contributions of hyperconjugation and steric effects to the ethane rotation barrier. The results show that hyperconjugation stabilizes the staggered conformer by about 4 kJ mol−1 relative to the eclipsed form (see picture) and steric hindrance is the major driving force behind the favoring of the staggered conformation in ethane.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.