We study response selection for multiturn conversation in retrieval-based chatbots. Existing work either concatenates utterances in context or matches a response with a highly abstract context vector finally, which may lose relationships among utterances or important contextual information. We propose a sequential matching network (SMN) to address both problems. SMN first matches a response with each utterance in the context on multiple levels of granularity, and distills important matching information from each pair as a vector with convolution and pooling operations. The vectors are then accumulated in a chronological order through a recurrent neural network (RNN) which models relationships among utterances. The final matching score is calculated with the hidden states of the RNN. An empirical study on two public data sets shows that SMN can significantly outperform stateof-the-art methods for response selection in multi-turn conversation.
Comparison of image processing techniques is critically important in deciding which algorithm, method, or metric to use for enhanced image assessment. Image fusion is a popular choice for various image enhancement applications such as overlay of two image products, refinement of image resolutions for alignment, and image combination for feature extraction and target recognition. Since image fusion is used in many geospatial and night vision applications, it is important to understand these techniques and provide a comparative study of the methods. In this paper, we conduct a comparative study on 12 selected image fusion metrics over six multiresolution image fusion algorithms for two different fusion schemes and input images with distortion. The analysis can be applied to different image combination algorithms, image processing methods, and over a different choice of metrics that are of use to an image processing expert. The paper relates the results to an image quality measurement based on power spectrum and correlation analysis and serves as a summary of many contemporary techniques for objective assessment of image fusion algorithms.
Learning high-quality sentence representations benefits a wide range of natural language processing tasks. Though BERT-based pretrained language models achieve high performance on many downstream tasks, the native derived sentence representations are proved to be collapsed and thus produce a poor performance on the semantic textual similarity (STS) tasks. In this paper, we present ConSERT, a Contrastive Framework for Self-Supervised SEntence Representation Transfer, that adopts contrastive learning to fine-tune BERT in an unsupervised and effective way. By making use of unlabeled texts, ConSERT solves the collapse issue of BERT-derived sentence representations and make them more applicable for downstream tasks. Experiments on STS datasets demonstrate that ConSERT achieves an 8% relative improvement over the previous state-of-the-art, even comparable to the supervised SBERT-NLI. And when further incorporating NLI supervision, we achieve new stateof-the-art performance on STS tasks. Moreover, ConSERT obtains comparable results with only 1000 samples available, showing its robustness in data scarcity scenarios.
We study knowledge-grounded dialogue generation with pre-trained language models. To leverage the redundant external knowledge under capacity constraint, we propose equipping response generation defined by a pretrained language model with a knowledge selection module, and an unsupervised approach to jointly optimizing knowledge selection and response generation with unlabeled dialogues. Empirical results on two benchmarks indicate that our model can significantly outperform state-of-the-art methods in both automatic evaluation and human judgment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.