The current development of vaccines for SARS-CoV-2 is unprecedented. Little is known, however, about the nuanced public opinions on the coming vaccines. We adopt a human-guided machine learning framework (using more than 40,000 rigorously selected tweets from more than 20,000 distinct Twitter users) to capture public opinions on the potential vaccines for SARS-CoV-2, classifying them into three groups: pro-vaccine, vaccine-hesitant, and anti-vaccine. We aggregate opinions at the state and country levels, and find that the major changes in the percentages of different opinion groups roughly correspond to the major pandemic-related events. Interestingly, the percentage of the pro-vaccine group is lower in the Southeast part of the United States. Using multinomial logistic regression, we compare demographics, social capital, income, religious status, political affiliations, geo-locations, sentiment of personal pandemic experience and non-pandemic experience, and county-level pandemic severity perception of these three groups to investigate the scope and causes of public opinions on vaccines. We find that socioeconomically disadvantaged groups are more likely to hold polarized opinions on potential COVID-19 vaccines. The anti-vaccine opinion is the strongest among the people who have the worst personal pandemic experience. Next, by conducting counterfactual analyses, we find that the U.S. public is most concerned about the safety, effectiveness, and political issues regarding potential vaccines for COVID-19, and improving personal pandemic experience increases the vaccine acceptance level. We believe this is the first large-scale social media-based study to analyze public opinions on potential COVID-19 vaccines that can inform more effective vaccine distribution policies and strategies.
It has been one year since the outbreak of the COVID-19 pandemic. The good news is that vaccines developed by several manufacturers are being actively distributed worldwide. However, as more and more vaccines become available to the public, various concerns related to vaccines become the primary barriers that may hinder the public from getting vaccinated. Considering the complexities of these concerns and their potential hazards, this study is aimed at offering a clear understanding about different population groups’ underlying concerns when they talk about COVID-19 vaccines—particularly those active on Reddit. The goal is achieved by applying LDA and LIWC to characterize the pertaining discourse with insights generated through a combination of quantitative and qualitative comparisons. Findings include the following: (1) during the pandemic, the proportion of Reddit comments predominated by conspiracy theories outweighed that of any other topics; (2) each subreddit has its own user bases, so information posted in one subreddit may not reach that from other subreddits; and (3) since users’ concerns vary across time and subreddits, communication strategies must be adjusted according to specific needs. The results of this study manifest challenges as well as opportunities in the process of designing effective communication and immunization programs.
Background:
The current development of vaccines for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is unprecedented. Little is known, however, about the nuanced public opinions on the vaccines on social media.
Methods:
We adopt a human-guided machine learning framework using more than six million tweets from almost two million unique Twitter users to capture public opinions on the vaccines for SARS-CoV-2, classifying them into three groups: pro-vaccine, vaccine-hesitant, and anti-vaccine. After feature inference and opinion mining, 10,945 unique Twitter users are included in the study population. Multinomial logistic regression and counterfactual analysis are conducted.
Results:
Socioeconomically disadvantaged groups are more likely to hold polarized opinions on coronavirus disease 2019 (COVID-19) vaccines either pro-vaccine (
) or anti-vaccine (
). People who have the worst personal pandemic experience are more likely to hold the anti-vaccine opinion (
). The U.S. public is most concerned about the safety, effectiveness, and political issues regarding vaccines for COVID-19, and improving personal pandemic experience increases the vaccine acceptance level.
Conclusion:
Opinion on COVID-19 vaccine uptake varies across people of different characteristics.
In conclusion, approximately one-fifth of the patients have amiodarone-induced proarrhythmic events, while the incidence of Tdp or ventricular fibrillation is remarkably low. Amiodarone-associated Tdp occurred more frequently in Chinese females. Known predisposing factors for occurrence of Tdp prevailed in Chinese patients. QTc interval prolongation may be an independent risk factor of amiodarone-associated Tdp.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.