OBJECTIVETo determine whether dietary compounds targeting NFE2-related factor 2 (Nrf2) activation can be used to attenuate renal damage and preserve renal function during the course of streptozotocin (STZ)-induced diabetic nephropathy.RESEARCH DESIGN AND METHODSDiabetes was induced in Nrf2+/+ and Nrf2−/− mice by STZ injection. Sulforaphane (SF) or cinnamic aldehyde (CA) was administered 2 weeks after STZ injection and metabolic indices and renal structure and function were assessed (18 weeks). Markers of diabetes including blood glucose, insulin, polydipsia, polyuria, and weight loss were measured. Pathological alterations and oxidative damage in glomeruli were also determined. Changes in protein expression of the Nrf2 pathway, as well as transforming growth factor-β1 (TGF-β1), fibronectin (FN), collagen IV, and p21/WAF1Cip1 (p21) were analyzed. The molecular mechanisms of Nrf2-mediated protection were investigated in an in vitro model using human renal mesangial cells (HRMCs).RESULTSSF or CA significantly attenuated common metabolic disorder symptoms associated with diabetes in Nrf2+/+ but not in Nrf2−/− mice, indicating SF and CA function through specific activation of the Nrf2 pathway. Furthermore, SF or CA improved renal performance and minimized pathological alterations in the glomerulus of STZ-Nrf2+/+ mice. Nrf2 activation reduced oxidative damage and suppressed the expression of TGF-β1, extracellular matrix proteins and p21 both in vivo and in HRMCs. In addition, Nrf2 activation reverted p21-mediated growth inhibition and hypertrophy of HRMCs under hyperglycemic conditions.CONCLUSIONSWe provide experimental evidence indicating that dietary compounds targeting Nrf2 activation can be used therapeutically to improve metabolic disorder and relieve renal damage induced by diabetes.
Combining whole exome sequencing, transcriptome profiling, and T cell repertoire analysis, we investigate the spatial features of surgically-removed biopsies from multiple loci in tumor masses of 15 patients with non-small cell lung cancer (NSCLC). This revealed that the immune microenvironment has high spatial heterogeneity such that intratumoral regional variation is as large as inter-personal variation. While the local total mutational burden (TMB) is associated with local T-cell clonal expansion, local anti-tumor cytotoxicity does not directly correlate with neoantigen abundance. Together, these findings caution against that immunological signatures can be predicted solely from TMB or microenvironmental analysis from a single locus biopsy.
A series of 5-N-methyl quindoline (cryptolepine) derivatives (2a- x) as telomeric quadruplex ligands was synthesized and evaluated. The designed ligands possess a positive charge at the 5- N position of the aromatic quindoline scaffold. The quadruplex binding of these compounds was evaluated by circular dichroism (CD) spectroscopy, fluorescence resonance energy transfer (FRET) melting assay, polymerase chain reaction (PCR) stop assay, nuclear magnetic resonance (NMR), and molecular modeling studies. Introduction of a positive charge not only significantly improved the binding ability but also induced the selectivity toward antiparallel quadruplex, whereas the nonmethylated derivatives tended to stabilize hybrid-type quadruplexes. NMR and molecular modeling studies revealed that the ligands stacked on the external G-quartets and the positively charged 5- N atom could contribute to the stabilizing ability. Long-term exposure of human cancer cells to 2r showed a remarkable cessation in population growth and cellular senescence phenotype and accompanied by a shortening of the telomere length.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.