This study was designed to investigate dynamic changes in the cellular immune system and circulating inflammatory markers after ischemic stroke. Blood was collected from 96 patients and 99 age-matched control subjects for detection of lymphocyte subpopulations and inflammatory markers. We observed decreases in B cells, Th cells, cytotoxic T cells, and NK cells and an increase in regulatory T (Treg) cells in stroke patients on days 1, 3, and 7. Serum levels of TNF-a, C-reactive protein (CRP), IL-4, IL-6, IL-10, IL-17, IL-23, and TGF-β increased, whereas serum level of IFN-? decreased at all time points after stroke. Stroke patients with infection exhibited a similar tendency toward changes in some lymphocyte subpopulations and inflammatory markers as stroke patients without infection. After controlling for NIH Stroke Scale (NIHSS), we observed no differences in lymphocyte subpopulations between patients with anterior circulation stroke and those with posterior circulation stroke at any time point. The splenic volume correlated positively with the percentages of B cells, Th cells, and cytotoxic T cells, but negatively with Treg cells on day 3 after stroke. Infections were associated with splenic volume, leukocyte counts, percentage of Treg cells, and serum levels of CRP, IL-10, and IFN-? on day 3. Lesion volume correlated positively with CRP, IL-6, and IL-23, but negatively with IFN-? on day 3. The NIHSS showed a positive relation with IL-6 and IL-10 on day 3. Ischemic stroke has a profound effect on the systemic immune system that might explain the increased susceptibility of stroke patients to infection.
Hematopoietic stem cells (HSCs) can give rise to all blood cells that are essential to defend against pathogen invasion. The defective capability of HSC self-renewal is linked to many serious diseases, such as anemia. However, the potential mechanism regulating HSC self-renewal has not been thoroughly elucidated to date. In this study, we showed that Zfp90 was highly expressed in HSCs. Zfp90 deficiency in the hematopoietic system caused impaired HSPC pools and led to HSC dysfunction. We showed that Zfp90 deletion inhibited HSC proliferation, while HSC apoptosis was not affected. Regarding the mechanism of this effect on HSC proliferation, we found that Zfp90 interacted with Snf2l, a subunit of the NURF complex, to regulate Hoxa9 expression. Ectopic expression of Hoxa9 rescued the HSC repopulation capacity in Zfp90-deficient mice, which indicates that Hoxa9 is the downstream effector of Zfp90. In summary, our findings identify Zfp90 as a key transcription factor in determining the fate of HSCs.
DNA transfection is an essential technique in the life sciences. Non-viral transfection reagents are widely used for transfection in basic science. However, low transfection efficiency is a problem in some cell types. This low efficiency can be primarily attributed to the intracellular degradation of transfected DNA by p62-dependent selective autophagy, specifically by p62 phosphorylated at the S403 residue (p62-S403-P). To achieve efficient DNA transfection, we focused on a phosphorylation process that generates p62-S403-P and investigated whether inhibition of this process affects transfection efficiency. One of the kinases that phosphorylate p62 is TBK1. The TBK1 gene depletion in murine embryonic fibroblast cells by genome editing caused a significant reduction or loss of p62-S405-P (equivalent to human S403-P) and enhanced transfection efficiency, suggesting that TBK1 is a major kinase that phosphorylates p62 at S403. Therefore, TBK1 is a viable target for drug treatment to increase transfection efficiency. Transfection efficiency was enhanced when cells were treated with one of the following TBK1 inhibitors BX795, MRT67307, or amlexanox. This effect was synergistically improved when the two inhibitors were used in combination. Our results indicate that TBK1 inhibitors enhanced transfection efficiency by suppressing p62 phosphorylation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.