Transition metal oxides (TMOs) have attracted considerable attention owing to their strong anchoring ability and natural abundance. However, their single‐site adsorption toward sulfur (S) species significantly lowers the possibility of S species reacting with Li+ in the electrolyte and increases the reaction barrier. This study investigates molecular modification by coupling the TMO structure with Li+ conductive polymer ligands, and vanadyl ethylene glycolate (VEG) is successfully synthesized by introducing organic ligands into the VOx crystal structure. In addition to the strong interaction between the VOx and lithium polysulfides via the V–S bond, the groups in the VEG polymer ligands can reversibly couple/decouple with Li+ in the electrolyte. Such dual‐site adsorption enables a smooth dynamic adsorption‐diffusion process. Accordingly, the VEG‐based Li–S cells exhibit excellent rate reversibility, cyclic stability, and a long cycle life without the addition of conducting agents. Encouragingly, the VEG‐based cells also exhibit close and excellent capacity decays of 0.081%, 0.078%, and 0.095% at 0, 25, and 50 °C (1 C for 200 cycles), respectively. This work provides a novel approach for developing advanced catalysts that can realize Li–S batteries with long‐term durability, fast charge‐discharge properties, and applications in a wide temperature range.
Lithium−sulfur batteries (LSBs) have been considered promising candidates for next-generation energy storage devices owing to their high energy density, low price, and environment-friendly characteristics. However, their commercialization has been hindered by the "shuttle effect", which occurs during the charge/discharge cycles and leads to poor cycling performance and low coulombic efficiency. Here, we synthesized flowershaped hollow VOOH spheres on the carbon nanotube (CNT) network, which were used as the multifunctional sulfur host materials for the first time in LSBs. These VOOH spheres can chemically and physically confine polysulfides as well as catalyze their redox conversion; additionally, their hollow structure can effectively accommodate the volume change during cycling. Moreover, the CNTs among spheres can improve the conductivity of the host material and increase the number of active sites for interfacial reactions. Accordingly, when used as a cathode material, VOOH@CNTs/S composites exhibited a large specific discharge capacity of 1414.63 mAh/g at 0.1 C and excellent cycling stability. At a low current density of 0.5 C, VOOH@CNTs/S exhibited a capacity decay of 0.044% per cycle after 100 cycles. Importantly, at an ultrahigh current density of 5 C, a specific capacity as high as 455.09 mAh/g could be still be delivered after 1000 cycles, corresponding to a superior capacity retention of 90.46% and an ultralow capacity decay of 0.009% per cycle. These findings open up a new material for the practical application of LSBs with ultrafast charge/discharge property and long-lasting cyclic stability.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.