Zinc (Zn) holds great promise as a desirable anode material for next‐generation rechargeable batteries. However, the uncontrollable dendrite growth and low coulombic efficiency of the Zn plating/stripping process severely impede further practical applications of Zn‐based batteries. Here, these roadblocks are removed by using in situ grown zeolitic imidazolate framework‐8 (ZIF‐8) as the ion modulation layer to tune the diffusion behavior of Zn
2+
ions on Zn anodes. The well‐ordered nanochannels and N species of ZIF‐8 can effectively homogenize Zn
2+
flux distribution and modulate the plating/stripping rate, ensuring uniform Zn deposition without dendrite growth. The Zn corrosion and hydrogen evolution are also alleviated by the insulating nature of ZIF‐8, resulting in high coulombic efficiency. Therefore, the Zn@ZIF anode shows highly reversible, dendrite‐free Zn plating/stripping behavior under a broad range of current densities, and a symmetric cell using this anode can work correctly up to 1200 h with a low polarization at 2 mA cm
−2
. Moreover, this ultrastable Zn@ZIF anode also enables a full Zn ion battery with outstanding cyclic stability (10 000 cycles).
Nickel is an ideal non-noble metal anode catalyst for direct urea fuel cell (DUFC) due to its high activity. However, there exists a large overpotential toward urea electrooxidation. Herein, NiCo/C bimetallic nanoparticles were prepared with various Co contents (0, 10, 20, 30 and 40 wt%) to improve the activity. The best Co ratio was 10% in the aspect of cell performance, with a maximum power density of 1.57 mW cm−2 when 0.33 M urea was used as fuel, O2 as oxidant at 60°C. The effects of temperature and urea concentration on DUFC performance were investigated. Besides, direct urine fuel cell reaches a maximum power density of 0.19 mW cm−2 with an open circuit voltage of 0.38 V at 60°C.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.