Porphyrin contains four inwardly oriented nitrogen atoms. It is arguably the most ubiquitous multifunctional naturally occurring macrocycle that has inspired the design of novel nitrogencontaining heterocycles for decades. While cyclic tetramers of pyrrole, indole, and pyridine have been exploited as macrocycles in this category, quinoline has been largely neglected as a synthon. Herein, we report the synthesis of TEtraQuinoline (TEQ) as a 'missing link' in this N4 macrocycle family. In TEQs, four quinoline units are concatenated to produce an S 4 -symmetric architecture. TEQs are characterized by a highly rigid saddle shape, wherein the lone-pair orbitals of the four nitrogen atoms are not aligned in a planar fashion. Nevertheless, TEQs can coordinate a series of transition-metal cations (Fe 2+ , Co 2+ , Ni 2+ , Cu 2+ , Zn 2+ , and Pd 2+ ). TEQs are inherently fluorescence-silent but become strongly emissive upon protonation or complexation of Zn(II) cations (ϕ = 0.71). TEQ/Fe(II) complexes can catalyze dehydrogenation and oxygenation reactions with catalyst loadings as low as 0.1 mol %.
A chemoselective dehydrogenation protocol for benzylic amines catalyzed by the TEtraQuinoline (TEQ)/FeCl2 complex is described. In combination with 2 equiv of tert‐butyl hydroperoxide, as little as 0.1 mol% of catalyst loading was sufficient to convert primary and secondary benzylic amines to the corresponding imines and dimerized imines, respectively. Subsequent hydrolysis of the imines allowed for removal of the benzyl group on the nitrogen atom. Nonaromatic carbon‐carbon multiple bonds and the O‐Bn group remained intact in the present protocol, providing a complementary deprotection procedure to reductive removal conditions exerted by Pd catalysis.
The C4N4 fluorophore is an intense fluorescence emitter featuring a 2,5-diaminopyrimidine core comprising four carbon and four nitrogen atoms. A series of C4N4 derivatives was photochemically dimerized at the 5-amino...
Porphyrin contains four inwardly oriented nitrogen atoms. It is arguably the most ubiquitous multifunctional naturally occurring macrocycle that has inspired the design of novel nitrogen-containing heterocycles for decades. While cyclic tetramers of pyrrole, indole, and pyridine have been exploited as macrocycles in this category, quinoline has been largely neglected as a synthon. Herein, we report the synthesis of TEtraQuinoline (TEQ) as a ‘missing link’ in this N4 macrocycle family. In TEQs, four quinoline units are concatenated to produce an S4-symmetric architecture. TEQs are characterized by a highly rigid saddle shape, wherein the lone-pair orbitals of the four nitrogen atoms are not aligned in a planar fashion. Nevertheless, TEQs can coordinate a series of transition-metal cations. TEQs are inherently fluorescence-silent, but become strongly emissive upon protonation or complexation of Zn(II) cations ( = 0.71). TEQ/Fe(II) complexes can catalyse dehydrogenation and oxygenation reactions with catalyst loadings as low as 0.1 mol%.
Porphyrin contains four inwardly oriented nitrogen atoms. It is arguably the most ubiquitous multifunctional naturally occurring macrocycle that has inspired the design of novel nitrogen-containing heterocycles for decades. While cyclic tetramers of pyrrole, indole, and pyridine have been exploited as macrocycles in this category, quinoline has been largely neglected as a synthon. Herein, we report the synthesis of TEtraQuinoline (TEQ) as a ‘missing link’ in this N4 macrocycle family. In TEQs, four quinoline units are concatenated to produce an S4-symmetric architecture. TEQs are characterized by a highly rigid saddle shape, wherein the lone-pair orbitals of the four nitrogen atoms are not aligned in a planar fashion. Nevertheless, TEQs can coordinate a series of transition-metal cations. TEQs are inherently fluorescence-silent, but become strongly emissive upon protonation or complexation of Zn(II) cations ( = 0.71). TEQ/Fe(II) complexes can catalyse dehydrogenation and oxygenation reactions with catalyst loadings as low as 0.1 mol%.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.