Layer-by-layer graphene growth is demonstrated by repeating CVD growth cycles directly on sapphire substrates. Improved field-effect mobility values are observed for the bottom-gate transistors fabricated by using the bilayer graphene channel, which indicates an improved crystallinity is obtained after the second CVD growth cycle. Despite the poor wettability of copper on graphene surfaces, graphene may act as a thin and effective diffusion barrier for copper atoms. The low resistivity values of thin copper films deposited on thin monolayer MoS 2 /monolayer graphene heterostructures have demonstrated its potential to replace current thick liner/barrier stacks in back-end interconnects. The unique van der Waals epitaxy growth mode will be helpful for both homo- and heteroepitaxy on 2D material surfaces.
With the assistance of van der Waals (vdW) epitaxy, nanometer-thick and highly conductive gold films are deposited onto MoS 2 surfaces for use as transparent anode electrodes in quantum dot light-emitting diodes (QLEDs) on poly(ethylene terephthalate) (PET) substrates. After transferring wafer-scale and monolayer MoS 2 to PET substrates, 10 nm thick gold (Au) films are deposited onto the two-dimensional (2D) material surfaces as anode electrodes. Bounded only by weak vdW forces on 2D material surfaces, the diffusive Au adatoms tend to facilitate lateral growth and lead to the formation of continuous and highly conductive thin metal films in the nanometer regime. The Au film exhibits excellent tensile bending stability for its sheet resistance, which is superior to that of rigid indium−tin oxide (ITO) films on PET substrates. Thermally stable CdSe@CdZnS/ZnS QLEDs are fabricated on the PET substrate. Compared with devices fabricated on sapphire substrates, the phenomenon of sub-bandgap turn-on is observed for the flexible device. Based on our demonstrations, the high conductivity and robust durability toward substrate bending make the nanometer-thick Au film grown on 2D material surfaces a promising candidate to replace current ITO anode electrodes for flexible device applications.
The generator is the most popular mobile power device and backup power device in the world. It is very important for human life. Therefore, it is important to develop more efficient combustion technology in order to save energy and reduce air pollution. In this paper, a novel technology of hydrogen and oxygen compound gasoline fuel is developed. Hydrogen and oxygen gases are produced from an electrolytic cell and then mixed with the intake gasoline and air. The compound fuel is sucked into the engine combustion chamber. The hydrogen and oxygen gases can be produced immediately without any storage device of hydrogen. The experimental results show that this technology can increase the power generation and decrease emission pollution due to promoting combustion efficiency. In addition, the spark plug seat temperature increases due to higher heat value of hydrogen. This technique can reduce carbon monoxide and HC, but increase carbon dioxide. The research and development of this technique can achieve the goals of energy saving, emission reduction, relative safety, easy refitting and low refitting expense. Moreover, this research possesses academic innovation and industrial application.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.