DNA nanogel exhibits properties of both the DNA and hydrogel, for example, remarkable biocompatibility, programmability, high drug loading capacity, and rapid stimuli‐responsive nature to microenvironment, which make it a potential ideal carrier for drug and gene delivery. In this review, DNA nanogels are categorized into two types, that is, rolling circle amplification‐based nanogel and hybridization‐based nanogel. Construction methods, design ideas for different functions, and applications in chemotherapy, gene therapy, and immunotherapy of nanogels are discussed. It is believed that this review will help readers to have a deeper understanding of the basic design strategies of DNA nanogels for specific targeting, loading of various anticancer agents, and stimuli‐responsive degradation of nanogels for the controlled release of drugs, which will ultimately help to design more effective delivery system for better therapeutic effects. It is very likely that DNA nanogel, as an intelligent drug carrier, will play a greater role in cancer treatment in future.
Pain is a significant problem worldwide that affects the quality of life of patients. Dezocine is a non-addictive analgesic drug with kappa-opioid antagonist activity and has been successfully used to alleviate of postoperative pain. In addition, dezocine has an analgesic effect similar to that of morphine, alleviating moderate to severe pain. Rap guanine nucleotide exchange factor 3 (RAPGEF3) is a guanine nucleotide exchange factor for GTPases Rap1 and Rap2, which could enhance the activity of Rap1 to promote cell adhesion and axon regeneration, as well as promote neurite extension by interacting with nerve growth factors. Here, we first observed that overexpression of RAPGEF3 increased cell viability, as shown by a CCK-8 assay, and recovered brain function in rats. The expression of inflammation-related factors at the mRNA level was detected using qPCR, and the concentration of these factors in a cultured cell medium and rat serum samples were decreased as shown by ELISA after RAPGEF3 overexpression. Through western blotting, we further found that pro-inflammatory proteins were decreased, and these effects might be mediated by inhibition of the Ras/p-38 MAPK signaling pathway. Taken together, we speculated that RAPGEF3overexpression enhances the therapeutic effect of dezocine on neuropathic pain by inhibiting the inflammatory response through inhibition of the Ras/p-38 MAPK signaling pathway.
Clustered regularly interspaced short palindromic repeats (CRISPR) and their associated proteins (Cas) are promising molecular diagnostic tools for rapidly and precisely elucidating the structure and function of genomes due to their high specificity, programmability, and multi-system compatibility in nucleic acid recognition. Multiple parameters limit the ability of a CRISPR/Cas system to detect DNA or RNA. Consequently, it must be used in conjunction with other nucleic acid amplification techniques or signal detection techniques, and the reaction components and reaction conditions should be modified and optimized to maximize the detection performance of the CRISPR/Cas system against various targets. As the field continues to develop, CRISPR/Cas systems have the potential to become an ultra-sensitive, convenient, and accurate biosensing platform for the detection of specific target sequences. The design of a molecular detection platform employing the CRISPR/Cas system is asserted on three primary strategies: (1) Performance optimization of the CRISPR/Cas system; (2) enhancement of the detection signal and its interpretation; and (3) compatibility with multiple reaction systems. This article focuses on the molecular characteristics and application value of the CRISPR/Cas system and reviews recent research progress and development direction from the perspectives of principle, performance, and method development challenges to provide a theoretical foundation for the development and application of the CRISPR/CAS system in molecular detection technology.
Correction for ‘In situ solution polymerization for preparation of MDI-modified graphene/hyperbranched poly(ether imide) nanocomposites and their properties’ by Quantao Li et al., RSC Adv., 2016, 6, 716–729.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.