In this work, a unified lattice Boltzmann model is proposed for the fourth order partial differential equation with time-dependent variable coefficients, which has the form ut+α(t)(p1(u))x+β(t)(p2(u))xx+γ(t)(p3(u))xxx+η(t)(p4(u))xxxx=0. A compensation function is added to the evolution equation to recover the macroscopic equation. Applying Chapman-Enskog expansion and the Taylor expansion method, we recovered the macroscopic equation correctly. Through analyzing the error, our model reaches second-order accuracy in time. A series of constant-coefficient and variable-coefficient partial differential equations are successfully simulated, which tests the effectiveness and stability of the present model.
A general propagation lattice Boltzmann model is used to solve Boussinesq equations. Different local equilibrium distribution functions are selected, and the macroscopic equation is recovered with second order accuracy by means of the Chapman–Enskog multi-scale analysis and the Taylor expansion technique. To verify the effectiveness of the present model, some Boussinesq equations with initial boundary value problems are simulated. It is shown that our model can remain stable and accurate, which is an effective algorithm worthy of promotion and application.
By using bifurcation theory of planar dynamic system to a generalized time fractional KdV equation, a large number of solutions including irrational function solution, Jacobian elliptic function solution, trigonometric function solution, solitary solution as well as compacton solution are derived. Under different parametric selection, various kinds of sufficient conditions and numerical simulations are demonstrated to visualize their mechanism.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.