Background: Hepatocellular carcinoma (HCC) is the most common primary liver cancer and is a highly vascularized solid tumor. Angiopoietin-2 (ANGPT2) has been described as an attractive target for antiangiogenic therapy. Exosomes are small extracellular vesicles secreted by most cell types and contribute to cell-to-cell communication by delivering functional cargo to recipient cells. The expression of ANGPT2 in tumor-derived exosomes remains unknown. Methods: We detected the ANGPT2 expression in HCC-derived exosomes by immunoblotting, enzyme-linked immunosorbent assay and immunogold labeling, then observed exosomal ANGPT2 internalization and recycling by confocal laser scanning microscopy, co-immunoprecipitation and immunoblotting. We used two HCC cell lines (Hep3B and MHCC97H) to overexpress ANGPT2 by lentivirus infection or knockdown ANGPT2 by the CRISPR/Cas system, then isolated exosomes to coculture with human umbilical vein endothelial cells (HUVECs) and observed the angiogenesis by Matrigel microtubule formation assay, transwell migration assay, wound healing assay, cell counting kit-8 assay, immunoblotting and in vivo tumorigenesis assay. Results: We found that HCC-derived exosomes carried ANGPT2 and delivered it into HUVECs by exosome endocytosis, this delivery led to a notable increase in angiogenesis by a Tie2-independent pathway. Concomitantly, we observed that HCC cell-secreted exosomal ANGPT2 was recycled by recipient HUVECs and might be reused. In addition, the CRISPR-Cas systems to knock down ANGPT2 significantly inhibited the angiogenesis induced by HCC cell-secreted exosomal ANGPT2, and obviously suppressed the epithelial-mesenchymal transition activation in HCC. Conclusions: Taken together, these results reveal a novel pathway of tumor angiogenesis induced by HCC cellsecreted exosomal ANGPT2 that is different from the classic ANGPT2/Tie2 pathway. This way may be a potential therapeutic target for antiangiogenic therapy.
Regeneration of injured nerve tissues requires intricate interplay of complex processes like axon elongation, remyelination, and synaptic formation in a tissue‐specific manner. A decellularized nerve matrix‐gel (DNM‐G) and a decellularized spinal cord matrix‐gel (DSCM‐G) are prepared from porcine sciatic nerves and spinal cord tissue, respectively, to recapitulate the microenvironment cues unique to the native tissue functions. Using an in vitro dorsal root ganglion–Schwann cells coculture model and proteomics analysis, it is confirmed that DNM‐G promotes far stronger remyelination activity and reduces synapse formation of the regenerating axons in contrast to DSCM‐G, Matrigel, and collagen I, consistent with its tissue‐specific function. Bioinformatics analysis indicates that the lack of neurotrophic factors and presence of some axon inhibitory molecules may contribute to moderate axonal elongation activity, while laminin β2, Laminin γ1, collagens, and fibronectin in DNM‐G promote remyelination. These results confirm that DNM‐G is a promising matrix material for peripheral nerve repair. This study provides more insights into tissue‐specific extracellular matrix components correlating to biological functions supporting functional regeneration.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.