The mRNA processing body (P-body) is a cellular structure that regulates gene expression by degrading cytoplasmic mRNA. The objective of this study was to identify and characterize novel components of the mammalian P-body. Approximately 5% of patients with the autoimmune disease primary biliary cirrhosis have antibodies directed against this structure. Serum from one of these patients was used to identify a cDNA encoding Ge-1, a 1401-amino-acid protein. Ge-1 contains an N-terminal WD40 motif and C-terminal domains characterized by a repeating c(X 2-3 ) motif. Ge-1 co-localized with previously identified P-body components, including proteins involved in mRNA decapping (DCP1a and DCP2) and the autoantigen GW182. The Ge-1 C-terminal domain was necessary and sufficient to target the protein to P-bodies. Following exposure of cells to oxidative stress, Ge-1-containing P-bodies were found adjacent to TIA-containing stress granules. During the recovery period, TIA returned to the nucleus while Ge-1-containing P-bodies localized to the perinuclear region. siRNA-mediated knock-down of Ge-1 resulted in loss of P-bodies containing Ge-1, DCP1a, and DCP2. In contrast, Ge-1-containing P-bodies persisted despite knock-down of DCP2. Taken together, the results of this study show that Ge-1 is a central component of P-bodies and suggest that Ge-1 may act prior to the 5 0 -decapping step in mRNA degradation.
The mRNA processing body (P-body) is a cellular structure that has an important role in mRNA degradation. P-bodies have also been implicated in RNAi-mediated post-transcriptional gene silencing. The objective of this study was to identify and characterize novel components of the mammalian P-body. Approximately 5% of patients with the autoimmune disease primary biliary cirrhosis have antibodies directed against this structure. Serum from one of these patients was used to identify a cDNA encoding RAP55, a 463-amino acid protein. RAP55 colocalized with previously identified P-body components DCP1a and Ge-1. RAP55 contains an N-terminal Sm-like domain and two C-terminal RGG-rich domains separated by an FDF motif. The two RGG domains and the FDF domain were necessary and sufficient to target the protein to P-bodies. A fragment of RAP55 consisting of the FDF and the second RGG domains did not localize to P-bodies, but was able to displace other P-body components from this structure. After cells were subjected to arsenite-induced stress, RAP55 was detected in TIA-containing stress granules. The second RGG domain was necessary and sufficient for stress granule localization. siRNA-mediated knock-down of RAP55 resulted in loss of P-bodies, suggesting that RAP55 acts prior to the 5¢-decapping step in mRNA degradation. The results of this study show that RAP55 is a component of P-bodies in cells at rest and localizes in stress granules in arsenite-treated cells. RAP55 may serve to shuttle mRNAs between P-bodies and stress granules.
Purpose:To determine if oxidative and nitrative stress and/or apoptosis contribute to increased coagulation when combining radiofrequency (RF) ablation with liposomal doxorubicin. Materials and Methods:Animal care committee approval was obtained. R3230 mammary adenocarcinomas in Fischer rats were treated with either RF ablation ( n = 43), 1 mg of intravenously injected liposomal doxorubicin ( n = 26), or combined therapy ( n = 30) and were compared with control subjects ( n = 11). A subset of animals receiving combination therapy ( n = 24) were treated in the presence or absence of N -acetylcysteine (NAC) administered 24 hours and 1 hour before RF ablation. Tumors were analyzed 2 minutes to 72 hours after treatment to determine the temporal range of response by using immunohistochemical staining of the apoptosis marker cleaved caspase-3, phosphorylated g H2AX , and Results:By 4 hours after RF ablation alone, a 0.48-mm 6 0.13 (standard deviation ) peripheral band with 57.0% 6 7.3 cleaved caspase-3 positive cells was noted at the ablation margin, whereas a 0.73-mm 6 0.18 band with 77.7% 6 6.3 positivity was seen for combination therapy ( P , .03 for both comparisons). Combination therapy caused increased and earlier staining for 4-HNE-modifi ed proteins, 8-OHdG, NT, and g H2AX with colocalization to cleaved caspase-3 staining. A rim of increased HSP70 was identifi ed peripheral to the area of cleaved caspase-3. Parameters of oxidative and nitrative stress were signifi cantly inhibited by NAC 1 hour following RF ablation, resulting in decreased cleaved caspase-3 positivity (0.28-mm 6 0.09 band of 25.9% 6 7.4 positivity vs 0.59-mm 6 0.11 band of 62.9% 6 6.0 positivity, P , .001 for both comparisons). Conclusion:Combining RF ablation with liposomal doxorubicin increases cell injury and apoptosis in the zone of increased coagulation by using a mechanism that involves oxidative and nitrative stress that leads to accelerated apoptosis.q RSNA, 2010
The Epstein-Barr virus (EBV) EBNA-LP protein is important for EBV-mediated B-cell immortalization and is a potent gene-specific coactivator of the viral transcriptional activator, EBNA2. The mechanism(s) by which EBNA-LP functions as a coactivator remains an important question in the biology of EBV-induced B-cell immortalization. In this study, we found that EBNA-LP interacts with the promyelocytic leukemia nuclear body (PML NB)-associated protein Sp100 and displaces Sp100 and heterochromatin protein 1a (HP1a) from PML NBs. Interaction between EBNA-LP and Sp100 was mediated through conserved region 3 in EBNA-LP and the PML NB targeting domain in Sp100. Overexpression of Sp100 lacking the N-terminal PML NB targeting domain, but not a mutant form of Sp100 lacking the HP1a interaction domain, was sufficient to coactivate EBNA2 in a gene-specific manner independent of EBNA-LP. These findings suggest that Sp100 is a major mediator of EBNA-LP coactivation. These studies indicate that modulation of PML NB-associated proteins may be important for establishment of latent viral infections, and also identify a convenient model system to investigate the functions of Sp100.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.