The Yellow River in China carries an extremely large sediment load. River channel-form and lateral shifting in a dynamic, partly meandering and partly braided reach of the lower Yellow River, have been significantly influenced by construction of Sanmenxia Dam in 1960, Liujiaxia Dam in 1968, Longyangxia Dam in 1985 and Xiaolangdi Dam in 1997 Using observations from Huayuankou Station, 128 km downstream of Xiaolangdi Dam, this study examines changes in the river before and after construction of the dams. The temporal changes in the mean annual flow discharge and mean annual suspended sediment concentration have been strongly influenced by operation of theses dams. Observations of sediment transport coefficient (ratio of sediment concentration to flow discharge), at-a-station hydraulic geometry and bankfull channel form observed from 1951 to 2006 have shown that, although variations in flow and sediment load correspond to different periods of dam operation, changes in channel form are not entirely synchronous with these. The channel has been subject to substantial deposition due to the flushing of sediment from Sanmenxia Dam, resulting in a marked reduction in bankfull cross-sectional area. Flows below bankfull had a greater impact on channel form than higher flows because of very high sediment load. At-a-station hydraulic geometry shows that the variation of channel cross-sectional area below bankfull in this wide and relatively shallow system largely depends on changes in width. Such at-a-station changes are significantly influenced by (1) events below bankfull and (2) overbank floods. Bankfull depth is the main component of channel adjustment in that depth adjusts synchronously with channel area. The channel adjusts its size by relatively uniform changes in depth and width since 1981. Channel morphology is not the product of single channelforming flow frequency. It is determined by the combination of relatively low flows that play an important role in fine sediment transport and bed configuration as with relatively high flows that are effective at modifying the channel's morphology. The sediment transport coefficient is a useful index for efficiently guiding the operation of the dams in a way that would minimize channel changes downstream. Sedimentation over the nearly 60 years of study period caused the lower Yellow River to aggrade progressively, the only significant exception being the two years following completion of Sanmenxia Dam.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.