Single-crystal indium antimony (InSb) nanowire was fabricated into middle-infrared photodetectors based on a metal–semiconductor-metal (M-S-M) structure. The InSb nanowires were synthesized using an electrochemical method at room temperature. The characteristics of the FET reveal an electron concentration of 3.6 × 1017 cm−3 and an electron mobility of 215.25 cm2 V−1 s−1. The photodetectors exhibit good photoconductive performance, excellent stability, reproducibility, superior responsivity (8.4 × 104 A W−1), and quantum efficiency (1.96 × 106%). These superior properties are attributed to the high surface-to-volume ratio and single-crystal 1D nanostructure of photodetectors that significantly reduce the scattering, trapping, and the transit time between the electrodes during the transport process. Furthermore, the M-S-M structure can effectively enhance space charge effect by the formation of the Schottky contacts, which significantly assists with the electron injection and photocurrent gain.
A spontaneously formed ZnO/ZnWOx bilayer resistive memory via an interfacial engineering by one-step sputtering process with controllable high resistance states was demonstrated. The detailed formation mechanism and microstructure of the ZnWOx layer was explored by X-ray photoemission spectroscopy (XPS) and transmission electron microscope in detail. The reduced trapping depths from 0.46 to 0.29 eV were found after formation of ZnWOx layer, resulting in an asymmetric I-V behavior. In particular, the reduction of compliance current significantly reduces the switching current to reach the stable operation of device, enabling less energy consumption. Furthermore, we demonstrated an excellent performance of the complementary resistive switching (CRS) based on the ZnO/ZnWOx bilayer structure with DC endurance >200 cycles for a possible application in three-dimensional multilayer stacking.
This work proposes a simple method, based on the crystal rotation technique and heterodyne interferometry, to simultaneously determine the pretilt angle and cell gap of nematic liquid crystal cells. When heterodyne light passes through a nematic liquid crystal cell, the phase retardation given by the characteristic parameters of the cell can be measured accurately by heterodyne interferometry. This phase retardation relates to the pretilt angle, cell gap, and angle of incidence on the cell. By using the measured phase retardations at two incident angles, the pretilt angle and cell gap of the nematic liquid crystal cell can be estimated by numerical analysis. This method is feasible, requiring only two incident angles and prior knowledge of two characteristic parameters--extraordinary and ordinary refractive indices of the liquid crystal. It is characterized by the advantages of simplicity of installation, ease of operation, high stability, high accuracy, and high resolution.
Selective area growth of single crystalline Sn-doped In2O3 (ITO) nanowires synthesized via vapor–liquid–solid (VLS) method at 600°C was applied to improve the field emission behavior owing to the reduction of screen effect. The enhanced field emission performance reveals the reduction of turn-on fields from 9.3 to 6.6 V μm−1 with increase of field enhancement factors (β) from 1,621 to 1,857 after the selective area growth at 3 h. Moreover, we find that the screen effect also highly depends on the length of nanowires on the field emission performance. Consequently, the turn-on fields increase from 6.6 to 13.6 V μm−1 with decreasing β values from 1,857 to 699 after the 10-h growth. The detailed screen effect in terms of electrical potential and NW density are investigated in details. The findings provide an effective way of improving the field emission properties for nanodevice application.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.