Summary Sox2 regulates the self-renewal of multiple types of stem cells. Recent studies suggest it also plays oncogenic roles in the formation of squamous carcinoma in several organs, including the esophagus where Sox2 is predominantly expressed in the basal progenitor cells of the stratified epithelium. Here, we use mouse genetic models to reveal a novel mechanism by which Sox2 cooperates with microenvironmental signals to malignantly transform epithelial progenitor cells. Conditional overexpression of Sox2 in basal cells expands the progenitor population in both the esophagus and forestomach. Significantly, carcinoma only develops in the forestomach where pathological progression correlates with inflammation and nuclear localization of Stat3 in progenitor cells. Importantly, co-overexpression of Sox2 and activated Stat3 (Stat3C) also transforms esophageal basal cells but not the differentiated suprabasal cells. These findings indicate basal stem/progenitor cells are the cells-of-origin of squamous carcinoma and that cooperation between Sox2 and microenvironment-activated Stat3 is required for Sox2-driven tumorigenesis.
Separation of the single anterior foregut tube into the esophagus and trachea involves cell proliferation and differentiation, as well as dynamic changes in cell-cell adhesion and migration. These biological processes are regulated and coordinated at multiple levels through the interplay of the epithelium and mesenchyme. Genetic studies and in vitro modeling have shed light on relevant regulatory networks that include a number of transcription factors and signaling pathways. These signaling molecules exhibit unique expression patterns and play specific functions in their respective territories before the separation process occurs. Disruption of regulatory networks inevitably leads to defective separation and malformation of the trachea and esophagus and results in the formation of a relatively common birth defect, esophageal atresia with or without tracheoesophageal fistula (EA/TEF). Significantly, some of the signaling pathways and transcription factors involved in anterior foregut separation continue to play important roles in the morphogenesis of the individual organs. In this review, we will focus on new findings related to these different developmental processes and discuss them in the context of developmental disorders (or birth defects) commonly seen in clinics.
Exposure of the lung to ionizing radiation that occurs in radiotherapy, as well as after accidental or intentional mass casualty incident can result in pulmonary fibrosis, which has few treatment options. Pulmonary fibrosis is characterized by an accumulation of extracellular matrix proteins that create scar tissue. Although the mechanisms leading to radiation-induced pulmonary fibrosis remain poorly understood, one frequent observation is the activation of the profibrotic cytokine transforming growth factor-beta (TGF-β). Our laboratory has shown that the metabolite lactate activates latent TGF-β by a reduction in extracellular pH. We recently demonstrated that lactate dehydrogenase-A (LDHA), the enzyme that produces lactate, is upregulated in patients with radiation-induced pulmonary fibrosis. Furthermore, genetic silencing of LDHA or pharmacologic inhibition using the LDHA inhibitor gossypol prevented radiation-induced extracellular matrix secretion in vitro through inhibition of TGF-β activation. In the current study, we hypothesized that LDHA inhibition in vivo prevents radiation-induced pulmonary fibrosis. To test this hypothesis, C57BL/6 mice received 5 Gy total-body irradiation plus 10 Gy thoracic irradiation from a 137Cs source to induce pulmonary fibrosis. Starting at 4 weeks postirradiation, mice were treated with 5 mg/kg of the LDHA inhibitor gossypol or vehicle daily until sacrifice at 26 weeks postirradiation. Exposure to radiation resulted in pulmonary fibrosis, characterized by an increase in collagen content, fibrosis area, extracellular matrix gene expression and TGF-β activation. Irradiated mice treated with gossypol had significantly reduced fibrosis outcomes, including reduced collagen content in the lungs, reduced expression of active TGF-β, LDHA and the transcription factor hypoxia-inducible factor-1 alpha (HIF-1α). These findings suggest that inhibition of LDHA protects against radiation-induced pulmonary fibrosis, and may be a novel therapeutic strategy for radiation-induced pulmonary fibrosis.
Establishment of the functional pulmonary vasculature requires intimate interaction between the epithelium and mesenchyme. Previous genetic studies have led to inconsistent conclusions about the contribution of epithelial Wnts to pulmonary vasculature development. This discrepancy is possibly due to the functional redundancy among different Wnts. Here, we use Shh-Cre to conditionally delete Gpr177 (the mouse ortholog of Drosophila Wntless, Wls), a chaperon protein important for the sorting and secretion of Wnt proteins. Deletion of epithelial Gpr177 reduces Wnt signaling activity in both the epithelium and mesenchyme, resulting in severe hemorrhage and abnormal vasculature, accompanied by branching defects and abnormal epithelial differentiation. We then used multiple mouse models to demonstrate that Wnt/β-catenin signaling is not only required for the proliferation and differentiation of mesenchyme, but also is important for the maintenance of smooth muscle cells through the regulation of the transcription factor Kruppel-like factor 2 (Klf2). Together, our studies define a novel mechanism by which epithelial Wnts regulate the normal development and maintenance of pulmonary vasculature. These findings provide insight into the pathobiology of congenital lung diseases, such as alveolar capillary dysplasia (ACD), that have abnormal alveolar development and dysmorphic pulmonary vasculature.
Myotonic dystrophy type 1 (DM1) is an autosomal dominant neuromuscular disorder caused by a CTG trinucleotide expansion at the DM1 locus. In this study, we investigated the frequency distribution of various CTG repeats in normal alleles and haplotyped the normal and expanded DM1 locus in a group of Taiwanese people. In the 496 normal chromosomes examined, up to 18 alleles with different CTG lengths from 5 to 30 repeats were found and the frequency of (CTG) 418 alleles was only 1.4% (7/496), predicting a low prevalence of DM1. In addition, there is no absolute association between (CTG) 5 ± 19 alleles and Alu insertion/deletion polymorphism observed on normal chromosomes. All DM1 alleles examined, however, were found to be associated with the Alu insertion. Further detailed genetic analysis demonstrated that at least eight haplotypes, including a new haplotype (L), were present in the Taiwanese population and that all DM1 alleles were with the same haplotype (haplotype A) as that identified in Canadian and Japanese DM1 populations. These findings support the notion that the out-of-Africa DM1 alleles were originated by stepwise expansion from a pool of large-sized normal chromosomes with haplotype A. European Journal of Human Genetics (2001) 9, 638 ± 641.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.