The ability to synthesize a broad spectrum of metal clusters (MCs) with their size controllable on a subnanometer scale presents an enticing prospect for exploring nanosize-dependent properties. Here we report an innovative design of a capping agent from a polytriazolium poly(ionic liquid) (PIL) in a vesicular form in solution that allows for crafting a variety of MCs including transition metals, noble metals, and their bimetallic alloy with precisely controlled sizes (∼1 nm) and record-high catalytic performance. The ultrastrong stabilization power is a result of an unusual synergy between the conventional binding sites in the heterocyclic cations in PIL and an in situ generated polycarbene structure induced simultaneously to the reduction reaction.
Nanoporous graphitic carbon membranes with defined chemical composition and pore architecture are novel nanomaterials that are actively pursued. Compared with easy-to-make porous carbon powders that dominate the porous carbon research and applications in energy generation/conversion and environmental remediation, porous carbon membranes are synthetically more challenging though rather appealing from an application perspective due to their structural integrity, interconnectivity and purity. Here we report a simple bottom–up approach to fabricate large-size, freestanding and porous carbon membranes that feature an unusual single-crystal-like graphitic order and hierarchical pore architecture plus favourable nitrogen doping. When loaded with cobalt nanoparticles, such carbon membranes serve as high-performance carbon-based non-noble metal electrocatalyst for overall water splitting.
Electro‐reforming of renewable biomass resources is an alternative technology for sustainable pure H2 production. Herein, we discovered an unconventional cation effect on the concurrent formate and H2 production via glycerol electro‐reforming. In stark contrast to the cation effect via forming double layers in cathodic reactions, residual cations at the anode were discovered to interact with the glycerol oxidation intermediates to steer its product selectivity. Through a combination of product analysis, transient kinetics, crown ether trapping experiments, in situ IRRAS and DFT calculations, the aldehyde intermediates were discovered to be stabilized by the Li+ cations to favor the non‐oxidative C−C cleavage for formate production. The maximal formate efficiency could reach 81.3 % under ≈60 mA cm−2 in LiOH. This work emphasizes the significance of engineering the microenvironment at the electrode–electrolyte interface for efficient electrolytic processes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.