Graves' disease is the leading cause of hyperthyroidism affecting 1.0–1.6% of the population. Antithyroid drugs are the treatment cornerstone, but may cause life-threatening agranulocytosis. Here we conduct a two-stage association study on two separate subject sets (in total 42 agranulocytosis cases and 1,208 Graves' disease controls), using direct human leukocyte antigen genotyping and SNP-based genome-wide association study. We demonstrate HLA-B*38:02 (Armitage trend Pcombined=6.75 × 10−32) and HLA-DRB1*08:03 (Pcombined=1.83 × 10−9) as independent susceptibility loci. The genome-wide association study identifies the same signals. Estimated odds ratios for these two loci comparing effective allele carriers to non-carriers are 21.48 (95% confidence interval=11.13–41.48) and 6.13 (95% confidence interval=3.28–11.46), respectively. Carrying both HLA-B*38:02 and HLA-DRB1*08:03 increases odds ratio to 48.41 (Pcombined=3.32 × 10−21, 95% confidence interval=21.66–108.22). Our results could be useful for antithyroid-induced agranulocytosis and potentially for agranulocytosis caused by other chemicals.
Diabetic patients have a higher risk of various types of cancer. However, whether diabetes may increase the risk of thyroid cancer has not been extensively studied. This paper reviews and summarizes the current literature studying the relationship between diabetes mellitus and thyroid cancer, and the possible mechanisms linking such an association. Epidemiologic studies showed significant or nonsignificant increases in thyroid cancer risk in diabetic women and nonsignificant increase or no change in thyroid cancer risk in diabetic men. A recent pooled analysis, including 5 prospective studies from the USA, showed that the summary hazard ratio (95% confidence interval) for women was 1.19 (0.84–1.69) and was 0.96 (0.65–1.42) for men. Therefore, the results are controversial and the association between diabetes and thyroid cancer is probably weak. Further studies are necessary to confirm their relationship. Proposed mechanisms for such a possible link between diabetes and thyroid cancer include elevated levels of thyroid-stimulating hormone, insulin, glucose and triglycerides, insulin resistance, obesity, vitamin D deficiency, and antidiabetic medications such as insulin or sulfonylureas.
In order to correlate the mutations inside the entire gyrA and gyrB genes with the level of resistance to ofloxacin (OFX) and moxifloxacin (MFX) in isolates of multidrug-resistant Mycobacterium tuberculosis (MDR-TB), a total of 111 isolates were categorized into OFX-susceptible (MIC, <2 g/ml) and low-level (MIC, 4 to 8 g/ml) and high-level (MIC, >16 g/ml) OFX-resistant isolates and MFX-susceptible (MIC, <0.5 g/ml) and low-level (MIC, 1 to 2 g/ml) and high-level (MIC, >4 g/ml) MFXresistant isolates. Resistance-associated mutations inside the gyrA gene were found in 30.2% of OFX-susceptible and 72.5% and 72.2% of low-level and high-level OFX-resistant isolates and in 28.6% of MFX-susceptible and 58.1% and 83.9% of low-level and high-level MFX-resistant isolates. Compared with OFX-susceptible isolates, low-level and high-level OFX-resistant isolates had a significantly higher prevalence of mutations at gyrA codons 88 to 94 (17.0%, 65.0%, and 72.2%, respectively; P < 0.001) and a higher prevalence of the gyrB G512R mutation (0.0%, 2.5%, and 16.7%, respectively; P ؍ 0.006). Similarly, compared with MFXsusceptible isolates, low-level and high-level MFX-resistant isolates had a significantly higher prevalence of mutations at gyrA codons 88 to 94 (14.3%, 51.6%, and 80.6%, respectively; P < 0.001) as well as a higher prevalence of the gyrB G512R mutation (0.0%, 0.0%, and 12.9%, respectively; P ؍ 0.011). D94G and D94N mutations in gyrA and the G512R mutation in gyrB were correlated with high-level MFX resistance, while the D94A mutation was associated with low-level MFX resistance. The prevalence of mutations at gyrA codons 88 to 94 and the gyrB G512R mutation were higher among fluoroquinolone (FQ)-susceptible East Asian (Beijing) and Indo-Oceanic strains than they were among Euro-American strains, implying that molecular techniques to detect FQ resistance may be less specific in areas with a high prevalence of East Asian (Beijing) and Indo-Oceanic strains. F luoroquinolones (FQs) are used as second-line drugs for the treatment of tuberculosis (TB). These broad-spectrum antibacterial agents with bactericidal activity against Mycobacterium tuberculosis exert their bactericidal effects by inhibiting mycobacterial DNA gyrase activity, which prevents bacterial DNA from unwinding and replicating (1-3).Moxifloxacin (MFX), a "fourth-generation" FQ, has been shown to have better activity against M. tuberculosis than ofloxacin (OFX) and is recommended by the World Health Organization (WHO) for the treatment of multidrug-resistant TB (MDR-TB; defined as resistant to at least two of the most effective antituberculosis drugs, isoniazid and rifampin) (2, 3). Unfortunately, the widespread use of FQs to treat bacterial infections has led to the emergence of FQ-resistant MDR-TB and extensively drug-resistant TB (XDR-TB; defined as MDR-TB resistant to any FQ and a second-line injectable drug) (4, 5), thereby complicating patient care.Mutations in genes encoding DNA gyrase subunits gyrA and gyrB are the most common mechanism conveying ...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.