Hepatocellular carcinoma (HCC) is one of the most common malignancies worldwide. Recent years, circular RNA (circRNA) have been shown to exert vital functions in the pathological progressions of many diseases. A growing number of evidences have identified the representative function of exosomal circRNAs in the physiological state of donor cells, which further induces cellular responses after captured by recipient cells. However, the contributions of circRNAs to HCC remain largely unknown. In vitro and in vivo regulatory roles of circRNA Cdr1as in proliferative and migratory abilities of HCC were evaluated by CCK8, EdU, Transwell and tumourigenicity assays, respectively. Results showed circRNA Cdr1as was highly expressed in HCC cell lines and tissues. Overexpression of circRNA Cdr1as greatly accelerated HCC cells to proliferate and migrate. Mechanistically, we found that Cdr1as could promote the expression of AFP, a well-known biomarker for HCC, by sponging miR-1270. Further studies showed exosomes extracted from HCC cells overexpressing circRNA Cdr1as accelerated the proliferative and migratory abilities of surrounding normal cells. In all, circRNA Cdr1as serves as a ceRNA to promote the progression of HCC. Meanwhile, it is directly transferred from HCC cells to surrounding normal cells via exosomes to further mediate the biological functions of surrounding cells.
The therapeutic pathways that modulate transcription mechanisms currently include gene knockdown and splicing modulation. However, additional mechanisms may come into play as more understanding of molecular biology and disease etiology emerge. Building on advances in chemistry and delivery technology, oligonucleotide therapeutics is emerging as an established, validated class of drugs that can modulate a multitude of genetic targets. These targets include over 10,000 proteins in the human genome that have hitherto been considered undruggable by small molecules and protein therapeutics. The approval of five oligonucleotides within the last 2 years elicited unprecedented excitement in the field. However, there are remaining challenges to overcome and significant room for future innovation to fully realize the potential of oligonucleotide therapeutics. In this review, we focus on the translational strategies encompassing preclinical evaluation and clinical development in the context of approved oligonucleotide therapeutics. Translational approaches with respect to pharmacology, pharmacokinetics, cardiac safety evaluation, and dose selection that are specific to this class of drugs are reviewed with examples. The mechanism of action, chemical evolution, and intracellular delivery of oligonucleotide therapies are only briefly reviewed to provide a general background for this class of drugs.
B-cell activation plays a crucial part in the immune system and is initiated via interaction between the B cell receptor (BCR) and specific antigens. In recent years with the help of modern imaging techniques, it was found that the cortical actin cytoskeleton changes dramatically during B-cell activation. In this review, we discuss how actin-cytoskeleton reorganization regulates BCR signaling in different stages of B-cell activation, specifically when stimulated by antigens, and also how this reorganization is mediated by BCR signaling molecules. Abnormal BCR signaling is associated with the progression of lymphoma and immunological diseases including autoimmune disorders, and recent studies have proved that impaired actin cytoskeleton can devastate the normal activation of B cells. Therefore, to figure out the coordination between the actin cytoskeleton and BCR signaling may reveal an underlying mechanism of B-cell activation, which has potential for new treatments for B-cell associated diseases.
A pharmacokinetic (PK) model was developed for nusinersen, an antisense oligonucleotide (ASO) that is the first approved treatment for spinal muscular atrophy (SMA). The model was built with data from 92 nonhuman primates (NHPs) following intrathecal doses (0.3–7 mg) and characterized the PK in cerebrospinal fluid (CSF), plasma, total spinal cord, brain, and pons. The estimated volumes were 13.6, 937, 4.5, 53.8, and 2.11 mL, respectively. Global sensitivity analysis demonstrated that the CSF‐to‐plasma drug distribution rate (0.09 hour−1) is a major determinant of the maximum nusinersen concentration in central nervous system (CNS) tissues. Physiological age‐based and body weight‐based allometric scaling was implemented with exponent values of −0.08 and 1 for the rate constants and the volume of distribution, respectively. Simulations of the scaled model were in agreement with clinical observations from 52 pediatric phase I PK profiles. The developed model can be used to guide the design of clinical trials with ASOs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.