Aims Early detection of aortic stenosis (AS) is becoming increasingly important with a better outcome after aortic valve replacement in asymptomatic severe AS patients and a poor outcome in moderate AS. We aimed to develop artificial intelligence-enabled electrocardiogram (AI-ECG) using a convolutional neural network to identify patients with moderate to severe AS. Methods and results Between 1989 and 2019, 258 607 adults [mean age 63 ± 16.3 years; women 122 790 (48%)] with an echocardiography and an ECG performed within 180 days were identified from the Mayo Clinic database. Moderate to severe AS by echocardiography was present in 9723 (3.7%) patients. Artificial intelligence training was performed in 129 788 (50%), validation in 25 893 (10%), and testing in 102 926 (40%) randomly selected subjects. In the test group, the AI-ECG labelled 3833 (3.7%) patients as positive with the area under the curve (AUC) of 0.85. The sensitivity, specificity, and accuracy were 78%, 74%, and 74%, respectively. The sensitivity increased and the specificity decreased as age increased. Women had lower sensitivity but higher specificity compared with men at any age groups. The model performance increased when age and sex were added to the model (AUC 0.87), which further increased to 0.90 in patients without hypertension. Patients with false-positive AI-ECGs had twice the risk for developing moderate or severe AS in 15 years compared with true negative AI-ECGs (hazard ratio 2.18, 95% confidence interval 1.90–2.50). Conclusion An AI-ECG can identify patients with moderate or severe AS and may serve as a powerful screening tool for AS in the community.
OBJECTIVE To develop an artificial intelligence (AI)-enabled electrocardiogram (ECG) algorithm capable of comprehensive, humanlike ECG interpretation and compare its diagnostic performance against conventional ECG interpretation methods. METHODSWe developed a novel AI-enabled ECG (AI-ECG) algorithm capable of complete 12-lead ECG interpretation. It was trained on nearly 2.5 million standard 12-lead ECGs from over 720,000 adult patients obtained at the Mayo Clinic ECG laboratory between 2007 and 2017. We then compared the need for human over-reading edits of the reports generated by the Marquette 12SL automated computer program, AI-ECG algorithm, and final clinical interpretations on 500 randomly selected ECGs from 500 patients. In a blinded fashion, 3 cardiac electrophysiologists adjudicated each interpretation as (1) ideal (ie, no changes needed), (2) acceptable (ie, minor edits needed), or (3) unacceptable (ie, major edits needed).RESULTS Cardiologists determined that on average 202 (13.5%), 123 (8.2%), and 90 (6.0%) of the interpretations required major edits from the computer program, AI-ECG algorithm, and final clinical interpretations, respectively. They considered 958 (63.9%), 1058 (70.5%), and 1118 (74.5%) interpretations as ideal from the computer program, AI-ECG algorithm, and final clinical interpretations, respectively. They considered 340 (22.7%), 319 (21.3%), and 292 (19.5%) interpretations as acceptable from the computer program, AI-ECG algorithm, and final clinical interpretations, respectively.CONCLUSION An AI-ECG algorithm outperforms an existing standard automated computer program and better approximates expert over-read for comprehensive 12-lead ECG interpretation.
BACKGROUND Automated computerized electrocardiogram (ECG) interpretation algorithms are designed to enhance physician ECG interpretation, minimize medical error, and expedite clinical workflow. However, the performance of current computer algorithms is notoriously inconsistent. We aimed to develop and validate an artificial intelligence-enabled ECG (AI-ECG) algorithm capable of comprehensive 12-lead ECG interpretation with accuracy comparable to practicing cardiologists. METHODSWe developed an AI-ECG algorithm using a convolutional neural network as a multilabel classifier capable of assessing 66 discrete, structured diagnostic ECG codes using the cardiologist's final annotation as the gold-standard interpretation. We included 2,499,522 ECGs from 720,978 patients 18 years of age with a standard 12-lead ECG obtained at the Mayo Clinic ECG laboratory between 1993 and 2017. The total sample was randomly divided into training (n 5 1,749,654), validation (n 5 249,951), and testing (n 5 499,917) datasets with a similar distribution of codes. We compared the AI-ECG algorithm's performance to the cardiologist's interpretation in the testing dataset using receiver operating characteristic (ROC) and precision recall (PR) curves. RESULTSThe model performed well for various rhythm, conduction, ischemia, waveform morphology, and secondary diagnoses codes with an area under the ROC curve of 0.98 for 62 of the 66 codes. PR metrics were used to assess model performance accounting for category imbalance and demonstrated a sensitivity 95% for all codes.CONCLUSIONS An AI-ECG algorithm demonstrates high diagnostic performance in comparison to reference cardiologist interpretation of a standard 12-lead ECG. The use of AI-ECG reading tools may permit scalability as ECG acquisition becomes more ubiquitous.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.