The IVUS-guided stenting of the CTO lesion was associated with less LLL and a lower incidence of "in-true-lumen" stent restenosis. Additional study is required to identify the clinical benefit of the IVUS-guided procedure for CTO lesions. [ChiCTR-TRC-10000996].
Curcumin has anti-inflammatory, antiproliferative, and antitumor effects. To understand the chemopreventive mechanism of curcumin against human malignancies, the cellular and molecular changes induced by this agent in human mammary epithelial (MCF-10A) and breast carcinoma (MCF- 7/TH) cell lines were investigated. The human multidrug- resistant breast cancer cell line was 3.5 fold more sensitive to curcumin than the mammary epithelial cell line. Even though both cell lines accumulated a similar amount of curcumin, a significantly higher percentage of apoptotic cells was induced in breast cancer cells compared to a very low percentage of apoptosis in mammary epithelial cells. Incubation of breast cancer cells with 20 and 40 microM curcumin for 24 h induced G2 block and sub-G0/G1 cell population, respectively. Curcumin treatment caused a reduction in the expression of Ki67, PCNA, and p53 mRNAs in breast cancer cells. The human mammary epithelial cell line showed a down-regulation of p21 mRNA and an up-regulation of Bax mRNA expression with curcumin treatment. The results suggest that apoptosis is involved in the curcumin-induced inhibition of tumor cell growth, and genes associated with cell proliferation and apoptosis may be playing a role in the chemopreventive action of curcumin.
Background and Aims
The development and progression of hepatocellular carcinoma (HCC) is dependent on its local microenvironment. Tumor‐associated macrophages (TAMs) are deemed a key factor for the tumor microenvironment and attribute to contribute to tumor aggressiveness. However, the detailed mechanism underlying the pro‐metastatic effect of TAMs on HCC remains undefined.
Approach and Results
The present study proved that TAMs were enriched in HCC. TAMs were characterized by an M2‐polarized phenotype and accelerated the migratory potential of HCC cells in vitro and in vivo. Furthermore, we found that M2‐derived exosomes induced TAM‐mediated pro‐migratory activity. With the use of mass spectrometry, we identified that integrin, αMβ2 (CD11b/CD18), was notably specific and efficient in M2 macrophage–derived exosomes (M2 exos). Blocking either CD11b and/or CD18 elicited a significant decrease in M2 exos–mediated HCC cell metastasis. Mechanistically, M2 exos mediated an intercellular transfer of the CD11b/CD18, activating the matrix metalloproteinase‐9 signaling pathway in recipient HCC cells to support tumor migration.
Conclusions
Collectively, the exosome‐mediated transfer of functional CD11b/CD18 protein from TAMs to tumor cells may have the potency to boost the migratory potential of HCC cells, thus providing insights into the mechanism of tumor metastasis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.