Law enforcement agencies need the ability to conduct electronic surveillance to combat crime, terrorism, or other malicious activities exploiting the Internet. However, the proliferation of anonymous communication systems on the Internet has posed significant challenges to providing such traceback capability. In this paper, we develop a new class of flow marking technique for invisible traceback based on Direct Sequence Spread Spectrum (DSSS), utilizing a Pseudo-Noise (PN) code. By interfering with a sender's traffic and marginally varying its rate, an investigator can embed a secret spread spectrum signal into the sender's traffic. The embedded signal is carried along with the traffic from the sender to the receiver, so the investigator can recognize the corresponding communication relationship, tracing the messages despite the use of anonymous networks. The secret PN code makes it difficult for others to detect the presence of such embedded signals, so the traceback, while available to investigators is, effectively invisible. We demonstrate a practical flow marking system which requires no training, and can achieve both high detection and low false positive rates. Using a combination of analytical modeling, simulations, and experiments on Tor (a popular Internet anonymous communication system), we demonstrate the effectiveness of the DSSS-based flow mark- *
Searchable symmetric encryption (SSE) has been widely applied in the encrypted database for queries in practice. Although SSE is powerful and feature-rich, it is always plagued by information leaks. Some recent attacks point out that forward privacy which disallows leakage from update operations, now becomes a basic requirement for any newly designed SSE schemes. However, the subsequent search operations can still leak a significant amount of information. To further strengthen security, we extend the definition of forward privacy and propose the notion of "forward search privacy". Intuitively, it requires search operations over newly added documents do not leak any information about past queries. The enhanced security notion poses new challenges to the design of SSE. We address the challenges by developing the hidden pointer technique (HPT) and propose a new SSE scheme called Khons, which satisfies our security notion (with the original forward privacy notion) and is also efficient. We implemented Khons and our experiment results on large dataset (wikipedia) show that it is more efficient than existing SSE schemes with forward privacy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.