Antimony selenide (Sb2Se3) has a one-dimensional (1D) crystal structure comprising of covalently bonded (Sb4Se6)n ribbons stacking together through van der Waals force. This special structure results in anisotropic optical and electrical properties. Currently, the photovoltaic device performance is dominated by the grain orientation in the Sb2Se3 thin film absorbers. Effective approaches to enhance the carrier collection and overall power-conversion efficiency are urgently required. Here, we report the construction of Sb2Se3 solar cells with high-quality Sb2Se3 nanorod arrays absorber along the [001] direction, which is beneficial for sun-light absorption and charge carrier extraction. An efficiency of 9.2%, which is the highest value reported so far for this type of solar cells, is achieved by junction interface engineering. Our cell design provides an approach to further improve the efficiency of Sb2Se3-based solar cells.
The liposome consisting of eggPC, cholesterol, and DSPE-PEG5000 with a molar ratio of 1.5:1:0.08 was used to entrap cell-free protein synthesis reaction mixture. The synthesis of a mutant green fluorescent protein in the liposome was confirmed by the fluorescence emitted from the liposome on flow cytometry analysis and fluorescence microscopy. The protein synthesized in the liposome is hence functional.
Acceleration of electrons in a low-density plasma in front of a solid target by a propagating short ultraintense laser pulse is studied. When the laser is reflected at the target surface the accelerated electrons, with energy scaling as the laser intensity, continue to move forward inertially and thus escape from the pulse. Electrons accelerated backwards by the reflected light can attain even higher energies due to their longer acceleration length and their high initial momentum from a relativistic return current.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.