The triglyceride–glucose (TyG) index has been correlated with insulin resistance. We aim to investigate the role of the TyG index on cardiovascular (CV) events in type 2 diabetes mellitus and compare the roles of fasting glucose, hemoglobin A1c, and the TyG index in predicting CV events. This retrospective study enrolled 3524 patients with type 2 diabetes from the Kaohsiung Medical University Research Database in 2009 in this longitudinal study and followed them until 2015. The TyG index was calculated as log (fasting triglyceride level (mg/dL) × fasting glucose level (mg/dL)/2). CV events included myocardial infarction, unstable angina, stroke, hospitalization for coronary artery disease, peripheral artery disease, and CV-related death. The association between variables and CV events was assessed using a multivariable stepwise Cox proportional hazard analysis. Two hundred and fifteen CV events (6.1%) were recorded during a follow-up period of 5.93 years. The multivariable stepwise analysis showed that high fasting glucose (HR, 1.007; p < 0.001) and a high TyG index (HR, 1.521; p = 0.004) but not hemoglobin A1c or triglycerides were associated with a higher rate of CV events. Adding fasting glucose and the TyG index to the basic model improved the predictive ability of progression to a CV event (p < 0.001 and p = 0.018, respectively), over that of hemoglobin A1c (p = 0.084) and triglyceride (p = 0.221). Fasting glucose and the TyG index are useful parameters and stronger predictive factors than hemoglobin A1c and triglyceride for CV events and may offer an additional prognostic benefit in patients with type 2 diabetes.
This study reports a microfluidic device for whole blood processing. The device uses the bifurcation law, cross-flow method, and hydrodynamic flow for simultaneous extraction of plasma, red blood cells, and on-chip white blood cell trapping. The results demonstrate successful plasma and red blood cell collection with a minimum dilution factor (0.76x) and low haemolysis effect. The extracted red blood cells can also be applied for blood type tests. Moreover, the device can trap up to ~1,800 white blood cells in 20 minutes. The three components can be collected simultaneously using only 6 μL of whole blood without any sample preparation processes. Based on these features, the microfluidic device enables low-cost, rapid, and efficient whole blood processing functionality that could potentially be applied for blood analysis in resource-limited environments or point-of-care settings.
Background: Patients with chronic kidney disease (CKD) are associated with high prevalence rates of proteinuria, vascular calcification and cardiomegaly. In this study, we investigated relationships among proteinuria, aortic arch calcification (AoAC) and cardio-thoracic ratio (CTR) in patients with CKD stage 3A-5. In addition, we investigated correlations among proteinuria and decline in renal function, overall and cardiovascular (CV) mortality. Methods: We enrolled 482 pre-dialysis patients with CKD stage 3A-5, and determined AoAC and CTR using chest radiography at enrollment. The patients were stratified into four groups according to quartiles of urine protein-to-creatinine ratio (UPCR). Results: The patients in quartile 4 had a lower estimated glomerular filtration rate (eGFR) slope, and higher prevalence rates of rapid renal progression, progression to commencement of dialysis, overall and CV mortality. Multivariable analysis showed that a high UPCR was associated with high AoAC (unstandardized coefficient β: 0.315; p = 0.002), high CTR (unstandardized coefficient β: 1.186; p = 0.028) and larger negative eGFR slope (unstandardized coefficient β:-2.398; p < 0.001). With regards to clinical outcomes, a high UPCR was significantly correlated with progression to dialysis (log per 1 mg/g; hazard ratio [HR], 2.538; p = 0.003), increased overall mortality (log per 1 mg/g; HR, 2.292; p = 0.003) and increased CV mortality (log per 1 mg/g; HR, 3.195; p = 0.006). Conclusions: Assessing proteinuria may allow for the early identification of high-risk patients and initiate interventions to prevent vascular calcification, cardiomegaly, and poor clinical outcomes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.